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A Survey of Collectives

Kagan Tumer and David Wolpert

ABSTRACT Due to the increasing sophistication and miniaturization
of computational components, complex, distributed systems of interact-
ing agents are becoming ubiquitous. Such systems, where each agent aims
to optimize its own performance, but where there is a well-defined set of
system-level performance criteria, are called collectives. The fundamen-
tal problem in analyzing/designing such systems is in determining how the
combined actions of self-interested agents leads to “coordinated” behavior
on a large scale. Examples of artificial systems which exhibit such behavior
include packet routing across a data network, control of an array of commu-
nication satellites, coordination of multiple deployables, and dynamic job
scheduling across a distributed computer grid. Examples of natural systems
include ecosystems, economies, and the organelles within a living cell.

No current scientific discipline provides a thorough understanding of the
relation between the structure of collectives and how well they meet their
overall performance criteria. Although still very young, research on collec-
tives has resulted in successes both in understanding and designing such
systems. It is expected that as it matures and draws upon other disciplines
related to collectives, this field will greatly expand the range of computa-
tionally addressable tasks. Moreover, in addition to drawing on them, such
a fully developed field of collective intelligence may provide insight into
already established scientific fields, such as mechanism design, economics,
game theory, and population biology. This chapter provides a survey to the
emerging science of collectives.

1.1 Just What is a “Collective”?

As computing power increases, becomes cheaper and is packed into smaller
and smaller units, a new computational paradigm, one based on adaptive
distributed computing is emerging. Whether used for control or optimiza-
tion of complex engineered systems, or the analysis of natural systems,
this new paradigm offers new and exciting solutions to the problems of
the twenty first century. However, before the full strength of this powerful
computational paradigm can be harnessed, some fundamental issues need
to be addressed.

In this chapter we provide a survey of approaches to large distributed

This is page 1
Printer: Opaque this



2 Kagan Tumer and David Wolpert

systems called collectives. A collective is a large system of agents!, where
each agent has a private utility function it is trying to optimize adap-
tive utility-maximizing algorithms, called ”agents”, along a world util-
ity function that measures the full system’s performance?. Though system
that meet this definition have been investigated in various field, no current
discipline provides a general framework with which to design and study
collectives.

Mechanism design, a subfield of economics, is perhaps the closest field
addressing the “design” question posed in a collective [82, 87]. Mechanism
design aims at finding the right “market mechanism” that will induce a
set of agents to act in a manner specified by the system designer. Though
this seems like a close match for what we expect a collective to achieve,
conventional mechanism design is specifically designed for human agents
and therefore is not meant to deal with arbitrary private and world utilities.
Also, some issues essential to collectives (e.g., learning in agents) do not
play a central role in it (see Section 1.2.3 for details).

Game theory, on the other hand, provides a good basis for the analysis
of collectives [11, 19, 30, 87]. However, the principal focus of game the-
ory is on the equilibrium behavior of fully rational agents. Unfortunately,
large adaptive real world systems seldom operate at (or near) equilibrium,
and due to the uncertainty in the agents’ decision making, are rarely com-
posed of fully rational agents. Furthermore practical issues fundamental to
collectives (e.g., scaling) are not generally addressed in game theory (see
Section 1.2.2 for details).

In the computer science domain, Reinforcement Learning (RL) [123,
221] and in particular, reinforcement learning in a Multi-Agent System
(MAS) [53, 56, 112, 192] addresses the question of how in a large dynamic
environment, one can learn to take actions to optimize a reward function.
In general however, RL in a MAS does not address how the reward func-
tions have to be crafted so that agents collectively act to optimize a world
utility is not addressed. As a consequence, in traditional RL approach to
multi-agent systems, each agent receives the full world reward as its private
utility. Though this “solution” bypasses the incentive compatibility issue, it
ignores the scalability issue. As such, though such systems work well where
there are a small number of agents [56], they do not scale to system with
hundreds or thousands of agents (see Section 1.2.1 for details).

Though mechanism design, game theory and reinforcement learning in
multi-agent systems provide some of the ingredients required for a full
fledged field of collectives, they fall short of providing a suitable starting
point for the development of such a field. Furthermore, merging concepts

I we use the term “agent” to refer to the components of the system, though the various

fields surveyed use different terminology (i.e., player in game theory)
2The world utility can be provided as part of the specifications of the system, or
“constructed” by the designer, as discussed below.



1. A Survey of Collectives 3

from one of these fields to another is in general cumbersome due to the
various assumptions — rarely explicit — deeply rooted in each field. What
is needed for the field of collectives to develop and mature is a common
language describing the various properties of collectives, a set of desirable
properties, a theoretical framework, and a set of problems that will provide
good testing grounds for new ideas in this field.

1.1.1 Distinguishing Characteristics of Collectives

Collectives can be characterized through many different distinguishing char-
acteristics. In design problems there are many decisions (either explicit or
implicit) that greatly affect the type of collective with which one ends up.
Similarly, there are many decisions that determine what types of problems
can be analyzed as collectives.

Since the chapters in this volume will focus on various design and analysis
aspects of collectives, we briefly synopsize some distinguishing character-
istics of collectives. These include the presence/absence of a well-defined
world utility function; the forward/inverse approach; the presence/need
for centralized control and/or communications; the presence/absence of a
model; and scalability /robustness/adaptivity.

World Utility Function

Having a well-defined world utility function that concerns the behavior of
the entire distributed system is crucial in the study of collectives. Such
a world utility function provides an objective quantification of how well
the system is performing. In that light, in a collective, we are not con-
cerned with an unquantifiable “emergent” behavior of the system. Rather
we are interested in how the system meets the pre-specified world utility (of
course, nothing precludes the world utility from depending on the emergent
behavior of the system, assuming such behavior can be quantified).

The most natural type of world utility is a provided utility, one that
comes as part of the problem definition and specifies the overall perfor-
mance criteria that the collectives needs to meet. Examples of such world
utilities include total throughput in a data network, total scientific informa-
tion gathered by a team of deployables, total information downloaded by
a constellation of satellites, the valuation of a company, or the percentage
of available free energy exploited by an ecosystem.

However, the lack of a provided world utility does not preclude a collective-
based approach to a problem. In such a case, assuming the agents have some
utility functions associated with them, a world utility can be constructed
(e.g., construct a social welfare function in economics). Examples of such
world utilities include sum of agent utilities, sum of agent utilities and
variances, and the utility of the worst-off agent. Note that optimizing each
of these constructed world utilities would result in different system behav-



4 Kagan Tumer and David Wolpert

ior. What is particularly interesting in such problems is the relationship
between the agents’ initial utility functions and the utility functions that
they ought to pursue in order to optimize the constructed world utility
function.

Forward (Analysis) vs. Inverse (Design) Problem

Whether it has a provided or constructed world utility, a collective can be
approached from two very different perspectives. Analysis or the forward
problem, and design or the inverse problem.

The forward problem focuses on how the localized attributes of a col-
lective induce global behavior and thereby determine system performance.
Generally, this problem arises in the study of already existing complex sys-
tems, and is most naturally applicable to biological systems, or systems
that can be viewed as such. Examples of such systems include ecosystems,
or a living cell, where in each case, the local interactions (species and or-
ganelles, respectively) lead to complex emergent behavior at a large scale.

Engineered systems such as processes (e.g., the space shuttle maintenance
and refurbishment process) or (economic) organizations can also be viewed
as forward problems in collectives. In those cases, the analysis approach
can lead to predictive models and detect interactions among components
of the system that may lead to breakdowns (e.g., determining whether a
component considered “safe” can cause a critical malfunction when it is
put in interaction with another “safe” component).

The inverse problem on the other hand, arises when we wish to design
a system to induce behavior which optimizes the world utility. Here, the
designer either has the freedom to assign the private utility functions of
the agents (e.g., determine what each satellite or router should be doing)
or needs to design incentives that will be added to the pre-existing private
utilities of the agents (e.g., economics, where agents are humans). In either
case though, the focus is on guiding towards states where the world utility
is high.

Centralized communication or control

Though not in the formal definition of a collective, many collectives are de-
centralized systems. With few exceptions, it will be difficult, if not impos-
sible, to have centralized control in a collective, not only because reaching
each agent may be problematic, but more fundamentally, because in many
cases a centralized algorithm may not be able to determine what each agent
should do.

Similarly, though some amount of global communication (e.g., broad-
casting) may be possible, in general there will be little to no centralized
communication, where a small subset of agents not only communicates
with all the other agents, but communicates differently with each one of
those other agents. Establishing the amount of allowed (or possible) cen-
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tralized communication and control will be one of the fundamental issues
in a collective.

Model-Based vs. Model-Free

Another important characteristic of a collective is the presence/absence of a
model describing the dynamics of the system. A model-based approaches
consist of:

1. Constructing a detailed model of the dynamics governing the collec-
tive;

2. Learning the function which maps the parameters of the model to the
resulting dynamics of the system (in practice, this step can involve
significant hand-tuning); and

3. a) Drawing conclusions about this system based on the model (for-
ward problem);
b) Determining parameters of the model that will yield desired be-
havior (inverse problem).

A fundamentally different approach however, is to dispense with build-
ing a model altogether, on the grounds that large, complex systems are
generally noisy, faulty, and often operate in non-stationary environments.
In such cases, coming up with a detailed model that captures the dynamics
in an accurate manner is often extraordinarily difficult.

A model-free approach hand relies on the agents “reacting” to the
environment (e.g., through a reinforcement learning mechanism). As such
they avoid explicitly modeling the system in which they operate, and in
particular, avoid the potentially infinite regress when one agent tries to
model another’s behavior and that other agent is itself modeling the first
agent’s behavior.

The model-based vs. model-free choice has significant consequences in
how the system can adapt, scale up, and how lessons learned from one
domain can map to another one. A model-based approach may be the choice
for domains where the designers can develop detailed models and have a
moderate degree of control over the environment. However, in domains
where detailed models are not available, or where there is reason to believe
changes in the environment can lead to significant deviations from any
model, a model-free approach is preferable.

Scalability

One of the implicit defining properties of a collective is that it is a large
system of distributed agents. As such, scalability is a fundamental property
of any approach that aims to study/design a collective. Though this does
not preclude extending extant analysis/design tools appropriate for single
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(or small) systems to large systems, it does suggest that in most instances,
new ways of approaching the problem are likely to be more appropriate
(e.g., a game theoretic equilibrium analysis for a million nano-devices is
unlikely to provide useful insight into the behavior of the collective.)

Adaptivity

Though scalability does not require that the system be adaptive, it pro-
vides a strong impetus to move in that direction. Any approach that allows
adaptivity, or learning, will have a significant advantage over one that does
not, simply because the larger a system, the more difficult it will be to
know a priori all the “right moves” for each agent.

Furthermore, the need for adaptivity extends beyond each agent in the
collective. Indeed the structure of the collective itself (e.g., the communica-
tion channels among the agents, the agents’ utility function) in many cases
is adaptive. In natural collectives this system-level adaptivity is generally
implicit (e.g., the interaction among species in an ecosystem or the rela-
tionship among employees in a company), whereas in artificial systems it
must be built in.

Robustness

Another desirable property of a collective is that it be robust, i.e., that the
collective not require that many details (e.g., parameters) be set just right
it to perform well. Clearly, as the number of agents in a collective goes
up, it will become increasingly difficult to ensure failure-free operation of
each agent. It is therefore imperative that the structure of the collective be
insensitive to the specific operation of a small subset of its agents (e.g., in
general the poor performance of one employee does not bring a company
down, or the demise of a single individual does not result in the extinction
of a species).

1.1.2 Canonical Exzperimental Domains

The previous section provided a list of distinguising characteristics of collec-
tives. The usefulness of these characteristics is in their providing a common
language for a field of collectives. For example, a particular instance of data
routing in a telecommunications network can be characterized as “a model-
free inverse problem involving a provided world utility function where there
is limited broadcast information but no form of global control.”

We now provide examples of both engineered and natural systems which
are ideally suited to be studied as collectives. For each, we provide one
or more world utility functions, discuss how it can be approached (e.g.,
forward/inverse problem), and what assumptions (e.g., is it model-based?)
and restrictions (e.g., is global communication possible?) are present.
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e Control system for constellations of communication satellites: A can-
didate world utility for this problem is a measure of (potentially im-
portance weighted) information transferred. It is an example of an
inverse problem, where centralized communication or control is likely
to be difficult or impossible due to physical constraints (e.g., time
lag), and where a model of the data flow is likely to be inadequate.

o Control system for constellations of planetary exploration vehicles: A
potential world utility for such a problem is a measure of the quality
of scientific data collected. Though this can be viewed as an example
of an inverse design problem (as with constellations of satellites), it
can also be approached as a forward problem, particularly if the vehi-
cles have have characteristics which cannot be altered (e.g., vehicles
are built and we are confronted with the problem of predicting the
behavior of the collective).

o Control system for routing over a communication network: An obvi-
ous world utility for this problem is the total throughput of the com-
munication network. Centralized communication or control in such a
network is all but impossible, but some amount of broadcast infor-
mation can filter its way to all the agents at regular time intervals.
As an inverse problem, one would be required to design the private
utility functions of the agents. As a forward problem on an already
functioning network, one could determine the stress points of the sys-
tem, or the states which would cause the largest congestions in the
network.

o Air Space Management: Given a problem specification where there is
some leeway in modifying the course and speed of airplanes, a poten-
tial world utility is minimizing delays at airports. The system design-
ers are faced with the inverse problem of determining the incentives
for the agents (whether they be pilots or air traffic controllers) so that
their behavior (e.g., arrival times to the airport’s airspace) optimizes
the world utility. This is a case where though global communication
is possible, global control is not.

e Managing a power grid: A world utility based on the efficiency of the
grid would be a good starting point for an inverse problem, involving
some degree of centralized communication or control. An alternative
world utility may be robustness. In such a case a forward problem
would involve finding how quickly the system responds to certain
disturbances, and how the system interactions can be modified so as
to limit the propagation of those disturbances.

o Job scheduling across a computational grid: A candidate world utility
is the efficiency in processing the jobs entering the system. This prob-
lem is very similar to managing a power grid, but provides a glimpse



8 Kagan Tumer and David Wolpert

at the inverse problem: how should one set the rewards of the com-
putational nodes so that they process the most number of jobs collec-
tively? A model-free solution involving learners at the computational
nodes would be based on limited global communication.

e Control of the elements of a nanocomputer: A potential world utility
for this problem is how well certain computations are carried out
by the nanocomputer. In an inverse problem, one would focus on
determining the structure of the adaptive system which would lead
the agents to perform the desired computations. A particular instance
of an inverse problem of this nature is the selection of subsets of faulty
devices, where the world utility is total aggregate error of the selected
devices.

o Study of a protocell: A potential world utility for this problem is the
length of time the protocell maintains its functionality. As a forward
problem, this problem consists of modeling the behavior of the system
based on the organelles and their functions/interactions. With more
leeway in the definition of the functions the organelles perform, one
can view this as an interesting inverse problem: What should the
organelles try to achieve to maintain the structure and functionality
of the protocell?

o Study/Design of an ecosystem: One world utility for the study of an
ecosystem is the total bio-mass of the ecosystem. In a model-based
forward problem, one can study the effect of various interactions on
the world utility. Alternatively, as an inverse problem, one can in-
vestigate how to design an ecosystem which will provide the best
sustainable bio-diversity for a given mass (e.g., for a long term space
mission).

e Design of incentives in a Company: A “simple” world world utility
for a company is the valuation of the company (share price times
the number of outstanding shares). The inverse problem consists of
determining how to design incentives that will induce the companies
valuation to go up (e.g., what set of salaries/benefits/stock options
will induce the employees to take actions that will benefit the corpo-
ration).

All of these problem share the property that they are inherently dis-
tributed systems where the interactions among the agents leads to complex
behavior. Though each one can be approached by conventional methods,
how those methods need to be modified to suit the particular application
will be different in each case. The aim of this chapter is to both accentuate
the similarities among these problems and also to highlight the need for a
general approach which would address all these problems within the same
framework.
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1.2 Review of Literature Related to Collectives

There are many approaches to analyzing and designing collectives that do
not exactly meet the needs of a “field of collectives” yet provide some part
of the equation. The rest of this section consists of brief presentations of
some of these approaches, and in particular characterizes them in terms of
the properties of collectives discussed above.

1.2.1 Al and Machine Learning

There is an extensive body of work in AI and machine learning that is
related to the design of collectives. Indeed, one of the most famous specu-
lative works in the field can be viewed as an argument that AT should be
approached as a design of collectives problem [163]. Below, we discuss some
topics relevant to collectives from this domain.

Distributed Artificial Intelligence

The field of Distributed Artificial Intelligence (DAI) has arisen as more and
more traditional Artificial Intelligence (AI) tasks have migrated toward par-
allel implementation. The most direct approach to such implementations
is to directly parallelize AI production systems or the underlying program-
ming languages [79, 189]. An alternative and more challenging approach
is to use distributed computing, where not only are the individual reason-
ing, planning and scheduling AI tasks parallelized, but there are different
modules with different such tasks, concurrently working toward a common
goal [118, 119, 143].

In a DAI, one needs to ensure that the task has been modularized in a
way that improves efficiency. Unfortunately, this usually requires a central
controller whose purpose is to allocate tasks and process the associated
results. Moreover, designing that controller in a traditional AT fashion of-
ten results in brittle solutions. Accordingly, recently there has been a move
toward both more autonomous modules and fewer restrictions on the in-
teractions among the modules [194].

Despite this evolution, DAI maintains the traditional AI concern with
a pre-fixed set of particular aspects of intelligent behavior (e.g. reasoning,
understanding, learning etc.) rather than on their cumulative character. As
the idea that intelligence may have more to do with the interaction among
components started to take shape [41, 42], focus shifted to concepts (e.g.,
multi-agent systems) that better incorporated that idea [121].

Multi-Agent Systems

The field of Multi-Agent Systems (MAS) is concerned with the interactions
among the members of such a set of agents [40, 92, 121, 204, 222], as
well as the inner workings of each agent in such a set (e.g., their learning
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algorithms) [36, 37, 38]. As in computational ecologies and computational
markets (see below), a well-designed MAS is one that achieves a global
task through the actions of its components. The associated design steps
involve [121]:

1. Decomposing a global task into distributable subcomponents, yield-
ing tractable tasks for each agent;

2. Establishing communication channels that provide sufficient informa-
tion to each of the agents for it to achieve its task, but are not too
unwieldly for the overall system to sustain; and

3. Coordinating the agents in a way that ensures that they cooperate
on the global task, or at the very least does not allow them to pursue
conflicting strategies in trying to achieve their tasks.

Step (3) is rarely trivial; one of the main difficulties encountered in MAS
design is that agents act selfishly and artificial cooperation structures have
to be imposed on their behavior to enforce cooperation [13]. An active area
of research, which holds promise for addressing parts the design of col-
lectives problem, is to determine how selfish agents’ “incentives” have to
be engineered in order to avoid problems such as the tragedy of the com-
mons (TOC) [209]. (This work draws on the economics literature, which
we review separately below.) When simply providing the right incentives
is not sufficient, one can resort to strategies that actively induce agents to
cooperate rather than act selfishly. In such cases coordination [205], nego-
tiations [135], coalition formation [193, 195, 249] or contracting [3] among
agents may be needed to ensure that they do not work at cross purposes.

Unfortunately, all of these approaches share with DAT and its offshoots
the problem of relying on hand-tailoring, and therefore being difficult to
scale and often nonrobust. In addition, except as noted in the next sub-
section, they involve little to no adaptivity, and therefore the constituent
computational elements are usually not as robust as they would need to be
to provide the foundation for the field of collectives.

Reinforcement Learning

The maturing field of Reinforcement Learning (RL) provides a much needed
tool for the types of problems addressed by collectives. The goal of an
RL algorithm is to determine how, using those reward signals, the agent
should update its action policy to maximize its utility [123, 220, 221, 232].
Because RL generally provides model-free® and “online” learning features,
it is ideally suited for the distributed environment where a “teacher” is
not available and the agents need to learn successful strategies based on

3There exist some model-based variants of traditional RL. See for example [8].
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“rewards” and “penalties” they receive from the overall system at various
intervals. It is even possible for the learners to use those rewards to modify
how they learn [199, 200].

Although work on RL dates back to Samuel’s checker player [191], rel-
atively recent theoretical [232] and empirical results [56, 224] have made
RL one of the most active areas in machine learning. Many problems rang-
ing from controlling a robot’s gait to controlling a chemical plant to al-
locating constrained resource have been addressed with considerable suc-
cess using RL [97, 114, 166, 186, 247]. In particular, the RL algorithms
TD(A) (which rates potential states based on a value function) [220] and
@-learning (which rates action-state pairs) [232] have been investigated
extensively. A detailed investigation of RL is available in [123, 221, 232].

Intuitively, one might hope that RL would help us solve the distributed
control problem, since RL is adaptive, and, in general mode-free. How-
ever, by itself, conventional single-agent RL does not provide a means for
controlling large, distributed systems. The problem is that the space of pos-
sible action policies for such systems is too big to be searched. So although
powerful and widely applicable, solitary RL algorithms will not generally
perform well on large distributed heterogeneous problems. It is however
natural to consider deploying many RL algorithms rather than a single one
for these large distributed problems.

Reinforcement Learning-Based Multi-Agent Systems

Because it neither requires explicit modeling of the environment nor having
a “teacher” that provides the “correct” actions, the approach of having the
individual agents in a MAS use RL is well-suited for MAS’s deployed in
domains where one has little knowledge about the environment and/or
other agents. There are two main approaches to designing such MAS’s:

(i) One has ‘solipsistic agents’ that don’t know about each other and whose
RL rewards are given by the performance of the entire system (so the joint
actions of all other agents form an “inanimate background” contributing
to the reward signal each agent receives);

(ii) One has ‘social agents’ that explicitly model each other and take each
others’ actions into account.

Both (i) and (ii) can be viewed as ways to (try to) coordinate the agents
in a MAS in a robust fashion.

Solipsistic Agents: MAS’s with solipsistic agents have been successfully
applied to a multitude of problems [56, 96, 107, 192, 198]. However, scaling
to large systems is a major issue with solipsistic agents. The problem is
that each agent must be able to discern the effect of its actions on the
overall performance of the system, since that performance constitutes its
reward signal. As the number of agents increases though, the effects of any
one agent’s actions (signal) will be swamped by the effects of other agents
(noise), making the agent unable to learn well, if at all. In addition, of
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course, solipsistic agents cannot be used in situations lacking centralized
calculation and broadcast of the single global reward signal.

Social agents: MAS’s whose agents take the actions of other agents into
account synthesize RL with game theoretic concepts (e.g., Nash equilib-
rium). They do this to try to ensure that the overall system both moves
toward achieving the overall global goal and avoids often deleterious oscil-
latory behavior [53, 85, 111, 113, 112]. To that end, the agents incorporate
internal mechanisms that actively model the behavior of other agents. In
general this approach involves hand-tailoring for the problem, and there are
some well-studied domains (El Farol Bar problem) in which such modeling
is self-defeating [5, 238].

1.2.2 Game Theory

Game theory is the branch of mathematics concerned with formalized ver-
sions of “games”, in the sense of chess, poker, nuclear arms races, and the
like [11, 19, 30, 73, 87, 148, 66, 207]. It is perhaps easiest to describe it by
loosely defining some of its terminology, which we do here and in the next
subsection.

The simplest form of a game is that of ‘non-cooperative single-stage
extensive-form’ game, which involves the following situation: There are
two or more agents (called ‘players’ in the literature), each of which has a
pre-specified set of possible actions that it can follow. (A ‘finite’ game has
finite sets of possible actions for all the players.) In addition, each agent i
has a utility function (also called a ‘payoff matrix’ for finite games). This
maps any ‘profile’ of the action choices of all agents to an associated utility
value for agent 4. (In a ‘zero-sum’ game, for every profile, the sum of the
payoffs to all the agents is zero.)

The agents choose their actions in a sequence, one after the other. The
structure determining what each agent knows concerning the action choices
of the preceding agents is known as the ‘information set’.* Games in which
each agent knows exactly what the preceding (‘leader’) agent did are known
as ‘Stackelberg games’.

In a ‘multi-stage’ game, after all the agents choose their first action,
each agent is provided some information concerning what the other agents
did. The agent uses this information to choose its next action. In the usual
formulation, each agent gets its payoff at the end of all of the game’s stages.

An agent’s ‘strategy’ is the rule it elects to follow mapping the informa-
tion it has at each stage of a game to its associated action. It is a ‘pure
strategy’ if it is a deterministic rule. If instead the agent’s action is chosen

4While stochastic choices of actions is central to game theory, most of the work in
the field assumes the information in information sets is in the form of definite facts,
rather than a probability distribution. Accordingly, there has been relatively little work
incorporating Shannon information theory into the analysis of information sets.
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by randomly sampling from a distribution, that distribution is known a
‘mixed strategy’. Note that an agent’s strategy concerns all possible se-
quences of provided information, even any that cannot arise due to the
strategies of the other agents.

Any multi-stage extensive-form game can be converted into a ‘normal
form’ game, which is a single-stage game in which each agent is ignorant
of the actions of the other agents, so that all agents choose their actions
“simultaneously”. This conversion is achieved by having the “actions” of
each agent in the normal form game correspond to an entire strategy in the
associated multi-stage extensive-form game. The payoffs to all the agents
in the normal form game for a particular strategy profile is then given by
the associated payoff matrices of the multi-stage extensive form-game.

Nash Equilibrium

A ‘solution’ to a game, or an ‘equilibrium’, is a profile in which every agent
behaves “rationally”. This means that every agent’s choice of strategy opti-
mizes its utility subject to a pre-specified set of conditions. In conventional
game theory those conditions involve, at a minimum, perfect knowledge of
the payoff matrices of all other players, and often also involve specification
of what strategies the other agents adopted and the like. In particular,
a ‘Nash equilibrium’ is a a profile where each agent has chosen the best
strategy it can, given the choices of the other agents. A game may have no
Nash equilibria, one equilibrium, or many equilibria in the space of pure
strategies. A beautiful and seminal theorem due to Nash proves that every
game has at least one Nash equilibrium in the space of mixed strategies
[171].

There are several different reasons one might expect a game to result
in a Nash equilibrium. One is that it is the point that perfectly ratio-
nal Bayesian agents would adopt, assuming the probability distributions
they used to calculate expected payoffs were consistent with one another
[10, 124]. A related reason, arising even in a non-Bayesian setting, is that
a Nash equilibrium provides “consistent” predictions, in that if all parties
predict that the game will converge to a Nash equilibrium, no one will ben-
efit by changing strategies. Having a consistent prediction does not ensure
that all agents’ payoffs are maximized though. The study of small pertur-
bations around Nash equilibria from a stochastic dynamics perspective is
just one example of a ‘refinement’ of Nash equilibrium, that is a criterion
for selecting a single equilibrium state when more than one is present [154].

Cooperative Game Theory

In cooperative game theory the agents are able to enter binding contracts
with one another, and thereby coordinate their strategies. This allows the
agents to avoid being “stuck” in Nash equilibria that are Pareto inefficient,
that is being stuck at equilibrium profiles in which all agents would benefit



14 Kagan Tumer and David Wolpert

if only they could agree to all adopt different strategies, with no possibility
of betrayal. The characteristic function of a game involves subsets (‘coali-
tions’) of agents playing the game. For each such subset, it gives the sum
of the payoffs of the agents in that subset that those agents can guarantee
if they coordinate their strategies. An imputation is a division of such a
guaranteed sum among the members of the coalition. It is often the case
that for a subset of the agents in a coalition one imputation dominates
another, meaning that under threat of leaving the coalition that subset
of agents can demand the first imputation rather than the second. So the
problem each agent 4 is confronted with in a cooperative game is which set
of other agents to form a coalition with, given the characteristic function
of the game and the associated imputations ¢ can demand of its partners.
There are several different kinds of solution for cooperative games that have
received detailed study, varying in how the agents address this problem of
who to form a coalition with. Some of the more popular are the ‘core’, the
‘Shapley value’, the ‘stable set solution’, and the ‘nucleolus’.

In the real world, the actual underlying game the agents are playing
does not only involve the actions considered in cooperative game theory’s
analysis of coalitions and imputations. The strategies of that underlying
game also involve bargaining behavior, considerations of trying to cheat
on a given contract, bluffing and threats, and the like. In many respects,
by concentrating on solutions for coalition formation and their relation
with the characteristic function, cooperative game theory abstracts away
these details of the true underlying game. Conversely though, progress has
recently been made in understanding how cooperative games can arise from
non-cooperative games, as they must in the real world [11].

Evolution and Learning in Games

Not surprisingly, game theory has come to play a large role in the field of
multi-agent systems. In addition, due to Darwinian natural selection, one
might expect game theory to be quite important in population biology, in
which the “utility functions” of the individual agents can be taken to be
their reproductive fitness. There is an entire subfield of game theory con-
cerned with this connection with population biology, called ‘evolutionary
game theory’ [155, 157].

To introduce evolutionary game theory, consider a game in which all
players share the same space of possible strategies, and there is an ad-
ditional space of possible ‘attribute vectors’ that characterize an agent,
along with a probability distribution g across that new space. (Examples
of attributes in the physical world could be things like size, speed, etc.) We
select a set of agents to play a game by randomly sampling g. Those agents’
attribute vectors jointly determine the payoff matrices of each of the indi-
vidual agents. (Intuitively, what benefit accrues to an agent for taking a
particular action depends on its attributes and those of the other agents.)
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However each agent 4 has limited information concerning both its attribute
vector and that of the other players in the game, information encapsulated
in an ‘information structure’. The information structure specifies how much
each agent knows concerning the game it is playing.

In this context, we enlarge the meaning of the term “strategy” to not just
be a mapping from information sets and the like to actions, but from entire
information structures to actions. In addition to the distribution g over
attribute vectors, we also have a distribution over strategies, h. A strategy
s is a ‘population strategy’ if h is a delta function about s. Intuitively, we
have a population strategy when each animal in a population “follows the
same behavioral rules”, rules that take as input what the animal is able to
discern about its strengths and weakness relative to those other members
of the population, and produce as output how the animal will act in the
presence of such animals.

Given g, a population strategy centered about s, and its own attribute
vector, any player ¢ in the support of g has an expected payoff for any
strategy it might adopt. When i’s payoff could not improve if it were to
adopt any strategy other than s, we say that s is ‘evolutionary stable’.
Intuitively, an evolutionary stable strategy is one that is stable with respect
to the introduction of mutants into the population.

Now consider a sequence of such evolutionary games. Interpret the pay-
off that any agent receives after being involved in such a game as the
‘reproductive fitness’ of that agent, in the biological sense. So the higher
the payoff the agent receives, in comparison to the fitnesses of the other
agents, the more “offspring” it has that get propagated to the next game.
In the continuum-time limit, where games are indexed by the real number
t, this can be formalized by a differential equation. This equation specifies
the derivative of g, evaluated for each agent i’s attribute vector, as a mono-
tonically increasing function of the relative difference between the payoff of
i and the average payoff of all the agents. (We also have such an equation
for h.) The resulting dynamics is known as ‘replicator dynamics’, with an
evolutionary stable population strategy, if it exists, being one particular
fixed point of the dynamics.

Now consider removing the reproductive aspect of evolutionary game
theory, and instead have each agent propagate to the next game, with
“memory” of the events of the preceding game. Furthermore, allow each
agent to modify its strategy from one game to the next by “learning” from
its memory of past games, in a bounded rational manner. The field of
learning in games is concerned with exactly such situations [86, 12, 17, 26,
70, 126, 178, 173]. Most of the formal work in this field involves simple
models for the learning process of the agents. For example, in ‘fictitious
play’ [86], in each successive game, each agent i adopts what would be
its best strategy if its opponents chose their strategies according to the
empirical frequency distribution of such strategies that ¢ has encountered in
the past. More sophisticated versions of this work employ simple Bayesian
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learning algorithms, or re-inventions of some of the techniques of the RL
community [190]. Typically in learning in games one defines a payoff to
the agent for a sequence of games, for example as a discounted sum of the
payoffs in each of the constituent games. Within this framework one can
study the long term effects of strategies such as cooperation and see if they
arise naturally and if so, under what circumstances.

Many aspects of real world games that do not occur very naturally oth-
erwise arise spontaneously in these kinds of games. For example, when the
number of games to be played is not pre-fixed, it may behoove a particular
agent i to treat its opponent better than it would otherwise, since ¢ may
have to rely on that other agent’s treating it well in the future, if they end
up playing each other again. This framework also allows us to investigate
the dependence of evolving strategies on the amount of information avail-
able to the agents [159]; the effect of communication on the evolution of
cooperation [160, 162]; and the parallels between auctions and economic
theory [108, 161].

In many respects, learning in games is even more relevant to the study
of collectives than is traditional game theory. However in general, it lacks a
well defined world utility and is almost exclusively focused on the forward
problem, making it a difficult starting point for a field of collectives.

1.2.3 Other Social Science—Inspired Systems

Some human economies provides examples of naturally occurring systems
that can be viewed as a (more or less) well-performing collectives. The field
of economics provides much more though. Both empirical economics (e.g.,
economic history, experimental economics) and theoretical economics (e.g.,
general equilibrium theory [4], theory of optimal taxation [164]) provide
a rich literature on strategic situations where many parties interact. In
fact, much of economics can be viewed as concerning how to maximize
certain constrained kinds of world utilities, when there are certain (very
strong) restrictions on the individual agents and their interactions, and in
particular when we have limited freedom in setting the utility functions of
those agents.

Mechanism Design

One way to try to induce a large collective to reach an equilibrium point
without centralize control is via an auction.’ (This is the approach usu-

5We do not discuss general equilibrium theory here in detail, because though it deals
with the interaction among multiple markets to set the market “clearing” price for the
goods, it is not appropriate for the study of collectives: it requires centralized control
(Walrasian auctioner), does not allow for dynamic interactions and in general, there is
no reason to believe that having the markets clear optimizes a world utility.
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ally employed in computational markets — see below.) Along with optimal
taxation and public good theory [137], the design of auctions is the sub-
ject of the field of mechanism design. Broadly defined, mechanism design
is concerned with the incentives that must be applied to any set of agents
that interact and exchange goods [87, 164, 229] in order to get those agents
to exhibit desired behavior. Usually the desired behavior concerns pre-
specified ‘inherent’ utility functions of some sort for each of the individual
agents. In particular, mechanism design is often concerned with the incen-
tives that must be superimposed on such inherent utility functions to guide
the agents to a ‘(Pareto) efficient’ (or ‘Pareto optimal’) point, that is to a
point in which no agent’s inherent utility can be improved without hurting
another agent’s inherent utility [86, 87].

One particularly important type of such an incentive scheme is an auc-
tion. When many agents interact in a common environment often there
needs to be a structure that supports the exchange of goods or information
among those agents. Auctions provide one such (centralized) structure for
managing exchanges of goods. For example, in the English auction all the
agents come together and ‘bid’ for a good, and the price of the good is
increased until only one bidder remains, who gets the good in exchange for
the resource bid. As another example, in the Dutch auction the price of a
good is decreased until one buyer is willing to pay the current price.

All auctions perform the same task: match supply and demand. As such,
auctions are one of the ways in which price equilibration among a set of
interacting agents can be achieved. However very few world utilities have
their maximum occur at a point that is Pareto optimal for the pre-set in-
herent utility functions. Accordingly, unless we are very fortunate in the
relation between those inherent utility functions and (in general separately
specified) world utility, knowing how to induce such a Pareto optimal point
is of little value. For example, in a transaction in an English auction both
the seller and the buyer benefit. They may even have arrived at an allo-
cation which is efficient. However, in that the winner may well have been
willing to pay more for the good, such an outcome may confound the goal
of the market designer, if that designer’s goal is to maximize revenue. This
point is returned to below, in the context of computational economics.

Another, perhaps more intuitive perspective, is to view the restrictions
of mechanism design as concerning the private utility functions of the in-
dividual agents. Typically in mechanism design the private utility function
for each agent 1, which maps states of the entire world (including the in-
ternal state of the agent itself) to R, is of the form v, (z;1,%n2, - Tnn,
Ty (Yn,1:Yn,25 - Yn,m)), Where v,(.) is agent n’s pre-fixed inherent utility
function, the z,,1,%y,2, ..., Ty,n constitute the first n of the n + k variables
that that function depends on, and T)(.) is the R¥-valued “mechanism”
function the designer can set, the ¥, 1,¥y,2, ..., Y5,m being the variables mak-
ing up its arguments. Unlike the private utility world utility can depend on
all of the 1, ..., Ty, Yn,1, Yn,25 -, Yy,m directly (as well as depend on other
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entirely different variables). As an example, the yy 1,Yp.2, ..., Yn,m could be
a set of all agents’ bids at an auction, T,(.) could be R?-valued, giving
the amount of change in 7’s owned quantities of both money and the item
up for bid, and the z; 1, ..., 5, could parameterize n’s happiness trade-off
relating owned quantities of the good and of money.

Typically 7,(.) and the choice of what variables make up the arguments
Yn,13Yn,2s - Yn,m to T, are fixed a priori, with only the function T),(.) al-
lowed to vary in the design. In addition, often there are a priori restrictions
on the functional form of the T,. For example, often the T}, are not allowed
to vary with 7. More precisely, usually they must be invariant under the
transformation 7 — n' in both the index to the function and the indices
to its arguments. This means in particular that the designer can’t “cheat”
and have the functional forms of the T; vary from one 1 to another in a
way that reflects the variations across the (often pre-determined) associ-
ated vectors (5,1, ...,Zn,n). For example, typically an auction mechanism
determines who gets what goods for what price in a manner that is inde-
pendent of the identities of the bidding agents, and in particular does not
directly reflect any internal happiness trade-off parameters of the agents
that aren’t reflected in their bids.

From the perspective of a collective, these kinds of restrictions on private
utilities only hold in a small subset of the potential computational prob-
lems, and constitute a severe handicap in other scenarios. Another limita-
tion of most of the work on mechanism design is that either it assumes a
particular computational model for the agent, or (more commonly) focuses
on (game-theoretic) equilibria. This limited nature of the treatment of off-
equilibrium scenarios is intimately related to the restrictions on the form of
the private utility. If there are no restrictions on the private utilities, then
there is a trivial solution for how to set such utilities to maximize the world
utility at equilibrium: Have each such utility simply equal the world utility,
in a so-called “team game”. To have the analysis be non-trivial, restrictions
like those on the private utilities are needed.

In practice though, no real system is at a game-theoretic equilibrium,
due to bounded rationality. In particular, it means that if one considers
mechanism design in the limiting case of no restrictions on «(.), the associ-
ated “mechanism design solution” of a team game often will result in poor
performance [238]. Team theory [105, 153] is one approach that has been
tried to circumvent this problem. The idea there is to remove all notions of
a private or inherent utility, and solve directly for the strategy profile that
will maximize the world utility. Needless to say though, such an approach
becomes extraordinarily difficult for all but the simplest problems, and
requires centralized, completely personalized control and communication,
and exact modeling of the system’s dynamics.



1. A Survey of Collectives 19

Computational Economics

‘Computational economies’ are schemes inspired by economics, and more
specifically by general equilibrium theory and mechanism design theory,
for managing the components of a distributed computational system. They
work by having a ‘computational market’, akin to an auction, guide the
interactions among those components. Such a market is defined as any
structure that allows the components of the system to exchange information
on relative valuation of resources (as in an auction), establish equilibrium
states (e.g., determine market clearing prices) and exchange resources (i.e.,
engage in trades).

Such computational economies can be used to investigate real economies
and biological systems [31, 34, 35, 128]. They can also be used to de-
sign distributed computational systems. For example, such computational
economies are well-suited to some distributed resource allocation prob-
lems, where each component of the system can either directly produce the
“goods” it needs or acquire them through trades with other components.
Computational markets often allow for far more heterogeneity in the com-
ponents than do conventional resource allocation schemes. Furthermore,
there is both theoretical and empirical evidence suggesting that such mar-
kets are often able to settle to equilibrium states. For example, auctions find
prices that satisfy both the seller and the buyer which results in an increase
in the utility of both (else one or the other would not have agreed to the
sale). Assuming that all parties are free to pursue trading opportunities,
such mechanisms move the system to a point where all possible bilateral
trades that could improve the utility of both parties are exhausted.

Now restrict attention to the case, implicit in much of computational
market work, with the following characteristics: First, world utility can be
expressed as a monotonically increasing function F' where each argument
1 of F' can in turn be interpreted as the value of a pre-specified utility
function f; for agent i. Second, each of those f; is a function of an i-
indexed ‘goods vector’ z; of the non-perishable goods “owned” by agent i.
The components of that vector are z; j, and the overall system dynamics is
restricted to conserve the vector ). x; ;. (There are also some other, more
technical conditions.) As an example, the resource allocation problem can
be viewed as concerning such vectors of “owned” goods.

Due to the second of our two conditions, one can integrate a market-
clearing mechanism into any system of this sort. Due to the first condition,
since in a market equilibrium with non-perishable goods no (rational) agent
ends up with a value of its utility function lower than the one it started with,
the value of the world utility function must be higher at equilibrium than
it was initially. In fact, so long as the individual agents are smart enough
to avoid all trades in which they do not benefit, any computational market
can only improve this kind of world utility, even if it does not achieve the
market equilibrium.
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This line of reasoning provides one of the main reasons to use computa-
tional markets in those situations in which they can be applied. Conversely,
it underscores one of the major limitations of such markets: Starting with
an arbitrary world utility function with arbitrary dynamical restrictions, it
may be quite difficult to cast that function as a monotonically increasing
F taking as arguments a set of agents’ goods-vector-based utilities f;, if
we require that those f; be well-enough behaved that we can reasonably
expect the agents to optimize them in a market setting.

One example of a computational economy being used for resource al-
location is Huberman and Clearwater’s use of a double-blind auction to
solve the complex task of controlling the temperature of a building. In this
case, each agent (individual temperature controller) bids to buy or sell cool
or warm air. This market mechanism leads to an equitable temperature
distribution in the system [116]. Other domains where market mechanisms
were successfully applied include purchasing memory in an operating sys-
tems [50], allocating virtual circuits [75], “stealing” unused CPU cycles
in a network of computers [69, 230], predicting option futures in financial
markets [185], and numerous scheduling and distributed resource allocation
problems [138, 142, 210, 218, 234, 235].

Computational economics can also be used for tasks not tightly coupled
to resource allocation. For example, following the work of Maes [151] and
Ferber [74], Baum shows how by using computational markets a large
number of agents can interact and cooperate to solve a variant of the blocks
world problem [22, 23]. However, market-based computational economics
relies on both centralized communication and centralized control to some
degree, raising scalability issues. Furthermore, in practice, the applicability
of computational economies depends greatly on the domain [225], making
it a difficult starting point for a field of collectives.

1.2.4 Biologically Inspired Systems

Properly speaking, biological systems do not involve utility functions and
searches across them with learning algorithms. However it has long been
appreciated that there are many ways in which viewing biological systems
as involving searches over such functions can lead to deeper understanding
of them [203, 244]. Conversely, some have argued that the mechanism
underlying biological systems can be used to help design search algorithms
[109].

These kinds of reasoning which relate utility functions and biological sys-
tems have traditionally focussed on the case of a single biological system
operating in some external environment. If we extend this kind of reason-

6See [150, 236] though for some counter-arguments to the particular claims most
commonly made in this regard.
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ing, to a set of biological systems that are co-evolving with one another,
then we have essentially arrived at biologically-based collectives. This sec-
tion discusses some of how previous work in the literature bears on this
relationship between collectives and biology.

Population Biology and Ecological Modeling

The fields of population biology and ecological modeling are concerned with
the large-scale “emergent” processes that govern the systems that consist
of many (relatively) simple entities interacting with one another [24, 99].
As usually cast, the “simple entities” are members of one or more species,
and the interactions are some mathematical abstraction of the process of
natural selection as it occurs in biological systems (involving processes like
genetic reproduction of various sorts, genotype-phenotype mappings, in-
ter and intra-species competitions for resources, etc.). Population Biology
and ecological modeling in this context addresses questions concerning the
dynamics of the resultant ecosystem, and in particular how its long-term
behavior depends on the details of the interactions between the constituent
entities. Broadly construed, the paradigm of ecological modeling can even
be broadened to study how natural selection and self-regulating feedback
creates a stable planet-wide ecological environment—Gaia [144].

The underlying mathematical models of other fields can often be use-
fully modified to apply to the kinds of systems population biology is in-
terested in [14]. (See also the discussion in the game theory subsection
above.) Conversely, the underlying mathematical models of population
biology and ecological modeling can be applied to other non-biological
systems. In particular, those models shed light on social issues such as
the emergence of language or culture, warfare, and economic competition
[71, 72, 88]. They also can be used to investigate more abstract issues
concerning the behavior of large complex systems with many interacting
components [89, 98, 156, 176, 184].

Going a bit further afield, an approach that is related in spirit to eco-
logical modeling is ‘computational ecologies’. These are large distributed
systems where each component of the system’s acting (seemingly) indepen-
dently results in complex global behavior. Those components are viewed as
constituting an “ecology” in an abstract sense (although much of the math-
ematics is not derived from the traditional field of ecological modeling). In
particular, one can investigate how the dynamics of the ecology is influenced
by the information available to each component and how cooperation and
communication among the components affects that dynamics [115, 117].

Although in some ways the most closely related to collectives of the cur-
rent ecology-inspired research, the fields of population biology and compu-
tational ecologies do not provide a full science of collectives. These fields
are primarily concerned with the “forward problem” of determining the
dynamics that arises from certain choices of the underlying system. Un-
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less one’s desired dynamics is sufficiently close to some dynamics that was
previously catalogued (during one’s investigation of the forward problem),
one has very little information on how to set up the components and their
interactions to achieve that desired dynamics.

Swarm Intelligence

The field of ‘swarm intelligence’ is concerned with systems that are modeled
after social insect colonies, so that the different components of the system
are queen, worker, soldier, etc. It can be viewed as ecological modeling in
which the individual entities have extremely limited computing capacity
and/or action sets, and in which there are very few types of entities. The
premise of the field is that the rich behavior of social insect colonies arises
not from the sophistication of any individual entity in the colony, but from
the interaction among those entities. The objective of current research is
to uncover kinds of interactions among the entity types that lead to pre-
specified behavior of some sort.

More speculatively, the study of social insect colonies may also provide
insight into how to achieve learning in large distributed systems. This is
because at the level of the individual insect in a colony, very little (or no)
learning takes place. However across evolutionary time-scales the social
insect species as a whole functions as if the various individual types in a
colony had “learned” their specific functions. The “learning” is the direct
result of natural selection. (See the discussion on this topic in the subsection
on ecological modeling.)

Swarm intelligences have been used to adaptively allocate tasks [33, 136],
solve the traveling salesman problem [62, 63] and route data efficiently in
dynamic networks [32, 201, 219] among others. However, there is no general
framework for adapting swarm intelligences to maximize particular world
utility functions. Accordingly, such intelligences generally need to be hand-
tailored for each application.

1.2.5 Physics-Based Systems
Statistical Physics

Equilibrium statistical physics is concerned with the stable state character
of large numbers of very simple physical objects, interacting according to
well-specified local deterministic laws, with probabilistic noise processes
superimposed [6, 188]. Typically there is no sense in which such systems can
be said to have centralized control, since all particles contribute comparably
to the overall dynamics.

Aside from mesoscopic statistical physics, the numbers of particles con-
sidered are usually huge (e.g., 102%), and the particles themselves are ex-
traordinarily simple, typically having only a few degrees of freedom. More-
over, the noise processes usually considered are highly restricted, being
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those that are formed by “baths”, of heat, particles, and the like. Simi-
larly, almost all of the field restricts itself to deterministic laws that are
readily encapsulated in Hamilton’s equations (Schrodinger’s equation and
its field-theoretic variants for quantum statistical physics). In fact, much of
equilibrium statistical physics isn’t even concerned with the dynamic laws
by themselves (as for example is stochastic Markov processes). Rather it is
concerned with invariants of those laws (e.g., energy), invariants that relate
the states of all of the particles. Deterministic laws without such readily-
discoverable invariants are outside of the purview of much of statistical
physics.

One potential use of statistical physics for collectives involves taking the
systems that statistical physics analyzes, especially those analyzed in its
condensed matter variant (e.g., spin glasses [213, 214]), as simplified mod-
els of a class of collectives. This approach is used in some of the analyses of
the El Farol Bar problem, also called the minority game (see below) [5, 48].
It is used more overtly in (for example) the work of Galam [90], in which
the equilibrium coalitions of a set of “countries” are modeled in terms of
spin glasses. This approach cannot provide a general collectives framework
though. This is due to its not providing a general solution to arbitrary col-
lectives inversion problems, being only concerned with the kinds of systems
discussed above, and to its not employing RL algorithms.”

Another contribution that statistical physics can make is with the math-
ematical techniques it has developed for its own purposes, like mean field
theory, self-averaging approximations, phase transitions, Monte Carlo tech-
niques, the replica trick, and tools to analyze the thermodynamic limit in
which the number of particles goes to infinity. Although such techniques
have not yet been applied to collectives, they have been successfully ap-
plied to related fields. This is exemplified by the use of the replica trick
to analyze two-player zero-sum games with random payoff matrices in the
thermodynamic limit of the number of strategies in [27]. Other examples
are the numeric investigation of iterated prisoner’s dilemma played on a
lattice [223], the analysis of stochastic games by expressing of deviation
from rationality in the form of a “heat bath” [154], and the use of topo-
logical entropy to quantify the complexity of a voting system studied in
[158].

Other quite recent work in the statistical physics literature is formally
identical to that in other fields, but presents it from a novel perspective.

"In regard to the latter point however, it’s interesting to speculate about recasting
statistical physics as a collective, by viewing each of the particles in the physical system
as running an “RL algorithm” that perfectly optimizes the “utility function” of its
Lagrangian, given the “actions” of the other particles. In this perspective, many-particle
physical systems are multi-stage games that are at Nash equilibrium in each stage. So
for example, a frustrated spin glass is such a system at a Nash equilibrium that is not
Pareto optimal.
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A good example of this is [211], which is concerned with the problem of
controlling a spatially extended system with a single controller, by using an
algorithm that is identical to a simple-minded proportional RL algorithm
(in essence, a rediscovery of RL).

Action Extremization

Much of the theory of physics can be cast as solving for the extremization of
an actional, which is a functional of the worldline of an entire (potentially
many-component) system across all time. The solution to that extremiza-
tion problem constitutes the actual worldline followed by the system. In
this way the calculus of variations can be used to solve for the worldline
of a dynamic system. As an example, simple Newtonian dynamics can be
cast as solving for the worldline of the system that extremizes a quantity
called the ‘Lagrangian’, which is a function of that worldline and of certain
parameters (e.g., the ‘potential energy’) governing the system at hand. In
this instance, the calculus of variations simply results in Newton’s laws.

If we take the dynamic system to be a collective, we are assured that its
worldline automatically optimizes a “global goal” consisting of the value of
the associated actional. If we change physical aspects of the system that
determine the functional form of the actional (e.g., change the system’s
potential energy function), then we change the global goal, and we are
assured that our collective optimizes that new global goal. Counter-intuitive
physical systems, like the strings-and-springs systems that exhibit Braess’
paradox [20], are simply systems for which the “world utility” implicit in
our human intuition is extremized at a point different from the one that
extremizes the system’s actional.

The challenge in exploiting this to solve the design of collectives problem
is in translating an arbitrary provided global goal for the collective into a
parameterized actional. Note that that actional must govern the dynam-
ics of the collective, and the parameters of the actional must be physical
variables in the collective, variables whose values we can modify.

Active Walker Models

The field of active walker models [21, 100, 101] is concerned with model-
ing “walkers” (be they human walkers or instead simple physical objects)
crossing fields along trajectories, where those trajectories are a function
of several factors, including in particular the trails already worn into the
field. Often the kind of trajectories considered are those that can be cast
as solutions to actional extremization problems so that the walkers can be
explicitly viewed as agents optimizing a private utility.

One of the primary concerns with the field of active walker models is how
the trails worn in the field change with time to reach a final equilibrium
state. The problem of how to design the cement pathways in the field
(and other physical features of the field) so that the final paths actually
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followed by the walkers will have certain desirable characteristics is then
one of solving for parameters of the actional that will result in the desired
worldline. This is a special instance of the inverse problem of how to design
a collective.

Using active walker models this way to design collectives, like action
extremization in general, probably has limited applicability. Also, it is not
clear how robust such a design approach might be, or whether it would be
scalable and exempt from the need for hand-tailoring.

1.2.6 Other Related Subjects

This subsection presents a “catch-all” of other fields that have little in
common with one another and while either still nascent or not extremely
closely related to collectives, bear some relation to collectives.

Stochastic Fields

An extremely well-researched body of work concerns the mathematical and
numeric behavior of systems for which the probability distribution over
possible future states conditioned on preceding states is explicitly pro-
vided. This work involves many aspects of Monte Carlo numerical algo-
rithms [172], all of Markov Chains [80, 177, 215], and especially Markov
fields, a topic that encompasses the Chapman-Kolmogorov equations [91]
and its variants: Liouville’s equation, the Fokker-Plank equation, and the
Detailed-balance equation in particular. Non-linear dynamics is also related
to this body of work (see the synopsis of iterated function systems below
and the synopsis of cellular automata above), as is Markov competitive
decision processes (see the synopsis of game theory above).

Formally, one can cast the problem of designing a collective as how to fix
each of the conditional transition probability distributions of the individual
elements of a stochastic field so that the aggregate behavior of the overall
system is of a desired form.®

Amorphous computing and Control of Smart Matter

Amorphous computing grew out of the idea of replacing traditional com-
puter design, with its requirements for high reliability of the components of

81n contrast, in the field of Markov decision processes, discussed in [45], the full sys-
tem may be a Markov field, but the system designer only sets the conditional transition
probability distribution of a few of the field elements at most, to the appropriate “deci-
sion rules”. Unfortunately, it is hard to imagine how to use the results of this field to de-
sign collectives because of major scaling problems. Any decision process must accurately
model likely future modifications to its own behavior — often an extremely daunting
task [150]. What’s worse, if multiple such decision processes are running concurrently in
the system, each such process must also model the others, potentially needing to model
them in their full complexity.
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the computer, with a novel approach in which widespread unreliability of
those components would not interfere with the computation [2, 1]. Some of
its more speculative aspects are concerned with “how to program” a mas-
sively distributed, noisy system of components which may consist in part
of biochemical and/or biomechanical components [131, 233]. Work here has
tended to focus on schemes for how to robustly induce desired geometric
dynamics across the physical body of the amorphous computer — issue
that are closely related to morphogenesis, and thereby lend credence to the
idea that biochemical components are a promising approach.

Especially in its limit of computers with very small constituent compo-
nents, amorphous computing also is closely related to the fields of nanotech-
nology [64]. As the prospect of nanotechnology-driven mechanical systems
gets more concrete, the daunting problem of how to robustly control, power,
and sustain protean systems made up of extremely large sets of nano-scale
devices looms more important [95, 96, 107]. If this problem were to be
solved one would in essence have “smart matter”. For example, one would
be able to “paint” an airplane wing with such matter and have it improve
drag and lift properties significantly.

Self Organizing Systems

The concept of self-organization and self-organized criticality [15] was origi-
nally developed to help understand why many distributed physical systems
are attracted to critical states that possess long-range dynamic correla-
tions in the large-scale characteristics of the system. It provides a powerful
framework for analyzing both biological and economic systems. For exam-
ple, natural selection (particularly punctuated equilibrium [68, 93]) can
be likened to self-organizing dynamical system, and some have argued it
shares many the properties (e.g., scale invariance) of such systems [57].
Similarly, one can view the economic order that results from the actions of
human agents as a case of self-organization [59]. The relationship between
complexity and self-organization is a particularly important one, in that it
provides the potential laws that allow order to arise from chaos [125].

Adaptive Control Theory

Adaptive control [7, 196], and in particular adaptive control involving
locally weighted RL algorithms [9, 165], constitute a broadly applicable
framework for controlling small, potentially inexactly modeled systems.
Augmented by techniques in the control of chaotic systems [52, 60, 61],
they constitute a very successful way of solving the “inverse problem” for
such systems. Unfortunately, it is not clear how one could even attempt to
scale such techniques up to the massively distributed systems of interest in
collectives.
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1.3 COIN Framework

The previous section provided a summary of different fields that address
various issues pertinent to the field of collectives. In this section, we sum-
marize the COIN (Collective Intelligence) framework, which is one of the
first frameworks that aims to bridge the gap between the needs of the field
of collectives and the extant analysis/design methods.’

1.8.1 Central Equation

Let Z be an arbitrary vector space whose elements z give the joint move of
all agents in the system (i.e., z specifies the full “worldline” consisting of
the actions/states of all the agents). The world utility G(z), is a function
of the full worldline, and we are concerned with the problem of finding the
z that maximizes G(z).

In addition to G, for each agent 7, there is a private utility function
{g9n}. The agents act to improve their individual private utility functions,
even though, we, as system designers are only concerned with the value
of the world utility G. To specify all agents other than 7, we will use the
notation 7.

Our uncertainty concerning the behavior of the system is reflected in a
probability distribution over Z. Our ability to control the system consists
of setting the value of some characteristic of the agents, e.g., setting the
private functions of the agents. Indicating that value by s, our analysis
revolves around the following central equation for P(G | s), which follows
from Bayes’ theorem:

PG |s) = / décP(G | &, ) / d&,P(Ez | &,5)P@E, |s), (1.1

where €, is the vector of the “intelligences” of the agents with respect to
their associated private functions, and €g is the vector of the intelligences
of the agents with respect to G. Intuitively, these vectors indicate what per-
centage of 7)’s actions would have resulted in lower utility.' In this chapter,
we use intelligence vectors as decomposition variables for Equation 1.1.
Note that €y, (z) = 1 means that player 7 is fully rational at z, in that its
move maximizes the value of its utility, given the moves of the players. In
other words, a point z where €,, () = 1 for all players 7 is one that meets
the definition of a game-theory Nash equilibrium. On the other hand, a
z at which all components of €z = 1 is a local maximum of G (or more
precisely, a critical point of the G(z) surface). So if we can get these two
vectors to be identical, then if the agents do well enough at maximizing

9The full COIN theory is presented in Chapter 2.
101ntelligence is formally defined in Chapter 2.
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their private utilities we are assured we will be near a local maximum of
G.

To formalize this, consider our decomposition of P(G | s). If we can
choose s so that the third conditional probability in the integrand, P(&; |
s), is peaked around vectors & all of whose components are close to 1
(that is agents are able to “learn” their tasks), then we have likely induced
large private utility intelligences. If we can also have the second term,
P(Ez | €, ), be peaked about €z equal to € (that is the private and world
utilities are aligned), then €g will also be large. Finally, if the first term in
the integrand, P(G | €g, s), is peaked about high G when &g is large, then
our choice of s will likely result in high G, as desired.

1.3.2 Factoredness and Learnability

For high values of G to be achieved, the private utility functions need
to have two properties. ' First, the private utility functions need to be
“aligned with G”, a need that is expressed in the second term of Equa-
tion 1.1. In particular, regardless of the details of the stochastic environ-
ment in which the agents operate, or of the details of the learning algo-
rithms of the agents, if €, equals €z exactly for all z, the desired form for
the second term in Equation 1.1 is assured. We call such a system factored.
In game theory language, the private utility function Nash equilibria of a
factored system are local maxima of G. In addition to this desirable equi-
librium behavior, factored systems also automatically provide appropriate
off-equilibrium incentives to the agents (an issue generally not considered
in the game theory / mechanism design literature).

Second, we want the agents’ private utility functions to have high learn-
ability, intuitively meaning that an agent’s utility should be sensitive to
its own actions and insensitive to actions of others. This requirement that
private utility functions have high “signal-to-noise” arises in the third term.
As an example, consider a “team game” where the private utility functions
are set to G. [56] Such a system is tautologically factored. However team
games often have low learnability, because in a large system an agent will
have a difficult time discerning the effects of its actions on G. As a con-
sequence, each 7 may have difficulty achieving high g, in such a system.
Loosely speaking, agent 7’s learnability is the ratio of the sensitivity of g,
to n’s actions to the sensitivity g, to the actions of all other agents. So

11 Non-game theory-based function maximization techniques like simulated annealing
instead address how to have term 1 have the desired form. They do this by trying to
ensure that the local maxima that the underlying system ultimately settles near have
high G, by “trading off exploration and exploitation”. One can combine such term-1-
based techniques with the techniques presented here, The resultant hybrid algorithm,
addressing all three terms, outperforms simulated annealing by over two orders of mag-
nitude [240].
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at a given state z, the higher the learnability, the more g,(z) depends on
the move of agent 7, i.e., the better the associated signal-to-noise ratio for
7. Intuitively then, higher learnability means it is easier for 1 to achieve a
large value of its utility.

1.3.83 Difference Utilities

It is possible to solve for the set of all private utilities that are factored
with respect to a particular world utility. Unfortunately, in general it is not
possible for a collective both to be factored and to have perfect learnability
for all of its players (i.e., no dependence of any g, on any agent other than
n) for all of its agents [238]. However, consider difference utilities, which
are of the form:

DU(z) = G(2) = T(f(2)) , (1.2)

where I'(f) is independent of z,. Such difference utilities are factored [238].
In addition, under usually benign approximations, learnability is maxi-
mized over the set of difference utilities by choosing

L(f(2) = E(G | zv,5) , (1.3)

up to an overall additive constant. We call the resultant difference utility
the Aristocrat utility (AU). If each player n uses an appropriately rescaled
version of the associated AU as its private utility function, then we have
ensured good form for both terms 2 and 3 in Equation 1.1.

Using AU in practice is sometimes difficult, due to the need to evaluate
the expectation value. Fortunately there are other utility functions that,
while being easier to evaluate than AU, still are both factored and possess
superior learnability to the team game utility, g, = G. One such private
utility function is the Wonderful Life Utility (WLU). The WLU for player
7 is parameterized by a pre-fixed clamping parameter C'L,, chosen from
among 7’s possible moves:

WLU, = G(z) — G(z+,CLy) . (14)

WLU is factored no matter what the choice of clamping parameter. Fur-
thermore, while not matching the high learnability of AU, WLU usually has
far better learnability than does a team game, because most of the “noise”
due to other agents is removed from 7’s utility. Therefore, WLU generally
results in better performance than does team game utilities [228, 238].

Figure 1.1 provides an example of clamping. As in that example, in many
circumstances there is a particular choice of clamping parameter for agent n
that is a “null” move for that agent, equivalent to removing that agent from
the system. For such a clamping parameter WLU is closely related to the
economics technique of “endogenizing a player’s (agent’s) externalities”, for
example with the Groves mechanism [174, 175, 87].
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z (z*%,(—]’)
M 1 00 = 1 00
N2 0 01 Clamp 0 0 0
73 1 00 72 to 1 00
in 010 “null” 010
(zﬁhvd)

== 1 0 0

Clamp .38 .33 .33

72 to 1 0 0

“average” 0 1 0

FIGURE 1.1. This example shows the impact of the clamping operation on the
joint state of a four-agent system where each agent has three possible actions,
and each such action is represented by a three-dimensional unary vector. The
first matrix represents the joint state of the system z where agent 1 has selected
action 1, agent 2 has selected action 3, agent 3 has selected action 1 and agent
4 has selected action 2. The second matrix displays the effect of clamping agent
2’s action to the “null” vector (i.e., replacing z,, with 0). The third matrix
shows the effect of instead clamping agent 2’s move to the “average” action
vector @ = {.33, .33, .33}, which amounts to replacing that agent’s move with the
“illegal” move of fractionally taking each possible move (z,, = @).

However it is usually the case that using WLU with a clamping parameter
that is as close as possible to the expected move defining AU results in far
higher learnability than does clamping to the null move. Such a WLU
is roughly akin to a mean-field approximation to AU.!2 For example, in
Fig. 1.1, if the probabilities of player 2 making each of its possible moves
was 1/3, then one would expect that a clamping parameter of @ would be
close to optimal. Accordingly, in practice use of such an alternative WLU
derived as a “mean-field approximation” to AU almost always results in
far better values of G than does the “endogenizing” WLU.

Intuitively, collectives having factored and highly learnable private utili-
ties like AU and WLU can be viewed as akin to well-run human companies.
G is the “bottom line” of the company, the players 7 are identified with the
employees of that company, and the associated g, given by the employees’
performance-based compensation packages. For example, for a “factored
company”, each employee’s compensation package contains incentives de-

12Formally, our approximation is exact only if the expected value of G equals G eval-
uated at the expected joint move (both expectations being conditioned on given moves
by all players other than 7). In general though, for relatively smooth G, we would expect
such a mean-field approximation to AU, to give good results, even if the approximation
does not hold exactly.
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signed such that the better the bottom line of the corporation, the greater
the employee’s compensation. As an example, the CEO of a company wish-
ing to have the private utilities of the employees be factored with G may
give stock options to the employees. The net effect of this action is to ensure
that what is good for the employee is also good for the company. In ad-
dition, if the compensation packages are “highly learnable”, the employees
will have a relatively easy time discerning the relationship between their
behavior and their compensation. In such a case the employees will both
have the incentive to help the company and be able to determine how best
to do so. Note that in practice, providing stock options is usually more
effective in small companies than in large ones. This makes perfect sense
in terms of the formalism summarized above, since such options generally
have higher learnability in small companies than they do in large compa-
nies, in which each employee has a hard time seeing how his/her moves
affect the company’s stock price.

1.8.4 Summary of COIN Results to Date

In earlier work, we tested the WLU for distributed control of network
packet routing [241], achieving substantially better throughput than by us-
ing the best possible shortest-path-based system [241], even though that
SPA-based system has information denied the agents in the W LU-based
collective. In related work we have shown that use of the W LU automati-
cally avoids the infamous Braess’ paradox, in which adding new links can
actually decrease throughput — a situation that readily ensnares SPA’s [228,
239].

We have also applied the W LU to the problem of controlling commu-
nication across a constellation of satellites so as minimize the importance-
weighted loss of scientific data flowing across that constellation [237]. We
have also shown that agents using utility functions derived from the COIN
framework significantly improve performance in the problem of job schedul-
ing across a heterogeneous computing grid [227].

In addition we have explored COIN-based techniques on variants of con-
gestion games [238, 242, 243], in particular of a more challenging variant
of Arthur’s El Farol bar attendance problem [5] (also known as the “mi-
nority game” [48]). In this work we showed that use of the W LU can result
in performance orders of magnitude superior to that of team game utili-
ties. We have also successfully applied COIN techniques to the problem of
coordinating a set of autonomous rovers so as to maximize the importance-
weighted value of a set of locations they visit [226].

Finally we have also explored applying COIN techniques to problems that
are explicitly cast as search. These include setting the states of the spins in
a spin glass to minimize energy; the conventional bin-packing problem of
computer science, and a model of human agents connected in a small-world
network who have to synchronize their purchase decisions [240].
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1.4 Applications/Problems Driving Collectives

The previous sections focused on fields that provide solutions to problems
arising in the field of collectives. To complement them, in this section we
present three problems that are particularly suited to being approached
from the field of collectives, and that provide fertile ground for testing
novel theories of collectives.

1.4.1 El Farol Bar Problem (Minority Game)

The “El Farol” bar problem (also known as the minority game) and its
variants provide a clean and simple testbed for investigating certain kinds
of interactions among agents [5, 44, 47, 206]. In the original version of the
problem, which arose in economics, at each time step (each “night”), each
agent needs to decide whether to attend a particular bar. The goal of the
agent in making this decision depends on the total attendance at the bar on
that night. If the total attendance is below a preset capacity then the agent
should have attended. Conversely, if the bar is overcrowded on the given
night, then the agent should not attend. (Because of this structure, the
bar problem with capacity set to 50% of the total number of agents is also
known as the ‘minority game’; each agent selects one of two groups at each
time step, and those that are in the minority have made the right choice).
The agents make their choices by predicting ahead of time whether the
attendance on the current night will exceed the capacity and then taking
the appropriate course of action.

What makes this problem particularly interesting is that it is impossible
for each agent to be perfectly “rational”, in the sense of correctly pre-
dicting the attendance on any given night. This is because if most agents
predict that the attendance will be low (and therefore decide to attend),
the attendance will actually high, while if they predict the attendance will
be high (and therefore decide not to attend) the attendance will be low.
(In the language of game theory, this essentially amounts to the property
that there are no pure strategy Nash equilibria [49, 246].) Alternatively,
viewing the overall system as a collective, it has a Prisoner’s Dilemma-like
nature, in that “rational” behavior by all the individual agents thwarts the
global goal of maximizing total enjoyment (defined as the sum of all agents’
enjoyment and maximized when the bar is exactly at capacity).

This frustration effect is a crisp example of the difficulty that can arise
when agents try to model agents that are in their turn modeling the first
agents. It is similar to what occurs in spin glasses in physics, and makes
the bar problem closely related to the physics of emergent behavior in
distributed systems [46, 47, 48, 248]. Researchers have also studied the dy-
namics of the bar problem to investigate economic properties like competi-
tion, cooperation and collective behavior and especially their relationship
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to market efficiency [58, 122, 197].

1.4.2 Data Routing in a Network

Packet routing in a data network [28, 110, 212, 231, 127, 94] presents a
particularly interesting domain for the investigation of collectives. In par-
ticular, with such routing:

(i) the problem is inherently distributed;

(ii) for all but the most trivial networks it is impossible to employ global
control ;

(iii) the routers have only access to local information (routing tables);

(iv) it constitutes a relatively clean and easily modified experimental testbed;
and

(v) there are potentially major bottlenecks induced by ‘greedy’ behavior
on the part of the individual routers, which behavior constitutes a readily
investigated instance of the Tragedy Of the Commons (TOC).

Many of the approaches to packet routing incorporate a variant on RL [39,
43, 51, 147, 152]. Q-routing is perhaps the best known such approach and
is based on routers using reinforcement learning to select the best path [39].
Although generally successful, Q-routing is not a general scheme for invert-
ing a global task. This is even true if one restricts attention to the problem
of routing in data networks — there exists a global task in such problems,
but that task is directly used to construct the algorithm.

A particular version of the general packet routing problem that is ac-
quiring increased attention is the Quality of Service (QoS) problem, where
different communication packets (voice, video, data) share the same band-
width resource but have widely varying importances both to the user and
(via revenue) to the bandwidth provider. Determining which packet has
precedence over which other packets in such cases is not only based on
priority in arrival time but more generally on the potential effects on the
income of the bandwidth provider. In this context, RL algorithms have
been used to determine routing policy, control call admission and maxi-
mize revenue by allocating the available bandwidth efficiently [43, 152].

Many researchers have exploited the noncooperative game theoretic un-
derstanding of the TOC in order to explain the bottleneck character of
empirical data networks’ behavior and suggest potential alternatives to
current routing schemes [25, 67, 132, 133, 139, 141, 179, 180, 208]. Closely
related is work on various “pricing”-based resource allocation strategies
in congestable data networks [149]. This work is at least partially based
upon current understanding of pricing in toll lanes, and traffic flow in gen-
eral (see below). All of these approaches are particularly of interest when
combined with the RL-based schemes mentioned just above. Due to these
factors, much of the current research on a general framework for collectives
is directed toward the packet-routing domain (see next section).
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1.4.83 Traffic Theory

Traffic congestion typifies the Tragedy of the Commons public good prob-
lem: everyone wants to use the same resource, and all parties greedily try-
ing to optimize their use of that resource not only worsens global behavior,
but also worsens their own private utility (e.g., if everyone disobeys traffic
lights, everyone gets stuck in traffic jams). Indeed, in the well-known Braess’
paradox [20, 54, 55, 134], keeping everything else constant — including the
number and destinations of the drivers — but opening a new traffic path
can increase everyone’s time to get to their destination. (Viewing the over-
all system as an instance of the Prisoner’s dilemma, this paradox in essence
arises through the creation of a novel ‘defect-defect’ option for the overall
system.) Greedy behavior on the part of individuals also results in very rich
global dynamic patterns, such as stop and go waves and clusters [102, 103].

Much of traffic theory employs and investigates tools that have previously
been applied in statistical physics [102, 129, 130, 183, 187] (see subsection
above). In particular, the spontaneous formation of traffic jams provides
a rich testbed for studying the emergence of complex activity from seem-
ingly chaotic states [102, 104]. Furthermore, the dynamics of traffic flow is
particular amenable to the application and testing of many novel numeri-
cal methods in a controlled environment [16, 29, 202]. Many experimental
studies have confirmed the usefulness of applying insights gleaned from
such work to real world traffic scenarios [102, 170, 169).

1.5 Challenge Ahead

Unfortunately, though they provide valuable insight on some aspects of col-
lectives, none of the fields discussed above can be modified to encompass
systems meeting all of the requirements of a “field” of collectives. This is
not too surprising, since none of those fields were explicitly designed to
design/analyze collectives, but rather touched on certain aspects of collec-
tives.

What is needed is a fundamentally new look at this field, one that though
may borrow from the various fields, will not simply extend an existing
field that was not meant to analyze general collectives. There are many
directions in which future work on collectives can and will proceed. It is
a vast and rich area of research, and understanding the interaction among
the various fields is essential in forging new directions.
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Dynamics of Large
Autonomous Computational
Systems

Tad Hogg and Bernardo A. Huberman

ABSTRACT Distributed large scale computation gives rise to a wide range
of behaviors, from the simple to the chaotic. This diversity of behaviors
stems from the fact that the agents and programs have incomplete knowl-
edge and imperfect information on the state of the system. We describe an
instantiation of such systems based on market mechanisms which provides
an interesting example of autonomous control. We also show that when
agents choose among several resources, the dynamics of the system can be
oscillatory and even chaotic. Furthermore, we describe a mechanism for
achieving global stability through local controls.

13.1 Introduction

It is by now an established fact that computation has become widely dis-
tributed over the world, both as networked computers and embedded sys-
tems, such as the processing power available in automobiles, mobile phones
and robots. And in distributed form the capabilities of the system as a
whole are much greater than those of single components. This is because
of the ability of a distributed system to share information, resources and
to parcel the computation in efficient ways.

The effective use of distributed computation is a challenging task, since
the processes must obtain resources in a dynamically changing environment
and be designed to collaborate despite a variety of asynchronous and unpre-
dictable changes. For instance, the lack of global perspectives for determin-
ing resource allocation requires a very different approach to system-level
programming and the creation of suitable languages. Even implementing
reliable methods whereby processes can compute in machines with diverse
characteristics is difficult.

As these distributed systems grow, they become a community of concur-
rent processes, or a computational ecosystem [9], which, in their interac-
tions, strategies, and lack of perfect knowledge, are analogous to biological
ecosystems and human economies. Since all of these systems consist of



340 Tad Hogg and Bernardo A. Huberman

a large number of independent actors competing for resources, this anal-
ogy can suggest new ways to design and understand the behavior of these
emerging computational systems. In particular, these existing systems have
methods to deal successfully with coordinating asynchronous operations in
the face of imperfect knowledge. These methods allow the system as a whole
to adapt to changes in the environment or disturbances to individual mem-
bers, in marked contrast to the brittle nature of most current computer
programs which often fail completely if there is even a small change in
their inputs or error in the program itself. To improve the reliability and
usefulness of distributed computation, it is therefore of interest to examine
the extent to which this analogy can be exploited.

Statistical mechanics, based on the law of large numbers, has taught us
that many universal and generic features of large systems can be quanti-
tatively understood as approximations to the average behavior of infinite
systems. Although such infinite models can be difficult to solve in detail,
their overall qualitative features can be determined with a surprising de-
gree of accuracy. Since these features are universal in character and depend
only on a few general properties of the system, they can be expected to
apply to a wide range of actual configurations. This is the case when the
number of relevant degrees of freedom in the system, as well as the number
of interesting parameters, is small. In this situation, it becomes useful to
treat the unspecified internal degrees of freedom as if they are given by a
probability distribution. This implies assuming a lack of correlations be-
tween the unspecified and specified degrees of freedom. This assumption
has been extremely successful in statistical mechanics. It implies that al-
though degrees of freedom may change according to purely deterministic
algorithms, the fact that they are unspecified makes them appear to an
outside observer as effectively random.

Consider, for instance, massively parallel systems which are desired to
be robust and adaptable. They should work in the presence of unexpected
errors and with changes in the environment in which they are embedded
(i-e., fail soft). This implies that many of the system’s internal degrees of
freedom will be allowed to adjust by taking on a range of possible configu-
rations. Furthermore, their large size will necessarily enforce a perspective
which concentrates on a few relevant variables. Although these consider-
ations suggest that the assumptions necessary for a statistical description
hold for these systems, experiments will be necessary for deciding their
applicability.

While computational and biological systems such as social insects and
multicellular organisms share a number of features, we should also note
there are a number of important differences. For instance, in contrast to
biological individuals, computational agents are programmed to complete
their tasks as soon as possible, which in turn implies a desirability for their
earliest death. This task completion may also involve terminating other
processes spawned to work on different aspects of the same problem, as
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in parallel search, where the first process to find a solution terminates the
others. This much more rapid turnover of agents can be expected to lead to
dynamics at much shorter time scales than seen in biological or economic
counterparts.

Another interesting difference between biological and computational ecolo-
gies lies in the fact that for the latter the local rules (or programs for the
processes) can be arbitrarily defined, whereas in biology those rules are
quite fixed. Moreover, in distributed computational systems the interac-
tions are not constrained by a Euclidean metric, so that processes sepa-
rated by large physical distances can strongly affect each other by passing
messages of arbitrary complexity between them. And last but not least, in
computational ecologies the rationality assumption of game theory can be
explicitly imposed on their agents, thereby making these systems amenable
to game dynamic analysis, suitably adjusted for their intrinsic characteris-
tics. On the other hand, computational agents are considerably less sophis-
ticated in their decision making capacity than people, which could prevent
expectations based on observed human performance from being realized.

There are by now a number of distributed computational systems which
exhibit many of the above characteristics, and that offer increased perfor-
mance when compared with traditional operating systems. For instance a
number of market based systems have been developed [3]. Enterprise [12]
is a market-like scheduler where independent processes or agents are al-
located at run time among remote idle workstations through a bidding
mechanism. A more evolved system, Spawn [16], is organized as a mar-
ket economy composed of interacting buyers and sellers. The commodities
in this economy are computer processing resources; specifically, slices of
CPU time on various types of computers in a distributed computational
environment. The system has been shown to provide substantial improve-
ments over more conventional systems, while providing dynamic response
to changes and resource sharing.

Another interesting application of distributed control for autonomous
systems is smart matter. These are mechanical systems with embedded mi-
croscopic sensors, computers and actuators that actively monitor and re-
spond to their environments in precisely controlled ways. These are micro-
electromechanical systems (MEMS) [2, 1] where the devices are fabricated
together in single silicon wafers. A robust control approach for such sys-
tems uses a collection of distributed autonomous processes, or agents, that
each deal with a limited part of the overall control problem [8]. Individual
agents can be associated with each sensor or actuator in the material, or
with various aggregations of these devices, to provide a mapping between
agents and physical location.

From a scientific point of view, the analogy between distributed compu-
tation and natural ecologies brings to mind the spontaneous appearance
of organized behavior in biological and social systems, where agents can
engage in cooperating strategies while working on the solution of particu-
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lar problems. In some cases, the strategy mix used by these agents evolves
towards an asymptotic ratio that is constant in time and stable against per-
turbations. This phenomenon sometimes goes under the name of evolution-
arily stable strategy (ESS). Recently, it has been shown that spontaneous
organization can also exist in open computational systems when agents can
choose among many possible strategies while collaborating in the solution
of computational tasks. In this case however, imperfect knowledge and de-
lays in information introduce asymptotic oscillatory and chaotic states that
exclude the existence of simple ESS’s. This is an important finding in light
of studies that resort to notions of evolutionarily stable strategies in the
design and prediction of open system’s performance.

In what follows we will describe a market based computational ecosys-
tem and a theory of distributed computation. The theory describes the
collective dynamics of computational agents, while incorporating many of
the features endemic to such systems, including distributed control, asyn-
chrony, resource contention, and extensive communication among agents.
When processes can choose among many possible strategies while collabo-
rating in the solution of computational tasks, the dynamics leads to asymp-
totic regimes characterized by complex attractors. Detailed experiments
have confirmed many of the theoretical predictions, while uncovering new
phenomena, such as chaos induced by overly clever decision-making proce-
dures.

Next, we will deal with the problem of controlling chaos in such systems,
for we have discovered ways of achieving global stability through local con-
trols inspired by fitness mechanisms found in nature. Furthermore, we will
show how diversity enters into the picture, along with the minimal amount
of such diversity that is required to achieve stable behavior in a distributed
computational system.

13.2 Computational Markets for Resource
Allocation

Allocating resources to competing tasks is one of the key issues for making
effective use of computer networks. Examples include deciding whether to
run a task in parallel on many machines or serially on one; and whether
to save intermediate results or recompute them as needed. The similarity
of this problem to resource allocation in market economies, has prompted
considerable interest in using analogous techniques to schedule tasks in a
network environment. In effect, a coordinated solution to the allocation
problem is obtained using Adam Smith’s “invisible hand” [14]. Although
unlikely to produce the optimal allocation that would be made by an om-
niscient controller with unlimited computational capability, it can perform
well compared to other feasible alternatives [4, 11]. As in economics [6],
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the use of prices provides a flexible mechanism for allocating resources,
with relatively low information requirements: a single price summarizes the
current demand for each resource, whether processor time, memory, com-
munication bandwidth, use of a database or control of a particular sensor.
This flexibility is especially desirable when resource preferences and per-
formance measures differ among tasks. For instance an intensive numerical
simulation’s need for fast floating point hardware is quite different from an
interactive text editor’s requirement for rapid response to user commands
or a database search’s requirement for rapid access to the data and fast
query matching.

As a conceptual example of how this could work in a computational
setting, suppose that a number of database search tasks are using networked
computers to find items of interest to various users. Furthermore, suppose
that some of the machines have fast floating point hardware but all are
otherwise identical. Assuming the search tasks make little use of floating
point operations, their performance will not depend on whether they run
on a machine with fast floating point hardware. In a market based system,
these programs will tend to value each machine based on how many other
tasks it is running, leading to a uniform load on the machines. Now suppose
some floating point intensive tasks arrive in the system. These will definitely
prefer the specialized machines and consequently bid up the price of those
particular resources. The database tasks, observing that the price for some
machines has gone up, will then tend to migrate toward those machines
without the fast floating point hardware. Importantly, because of the high
cost of modifying large existing programs, the database tasks will not need
to be rewritten to adjust for the presence of the new tasks. Similarly, there
is no need to reprogram the scheduling method of a traditional central
controller, which is often very time consuming.

This example illustrates how a reasonable allocation of resources could
be brought about by simply having the tasks be sensitive to current re-
source price. Moreover, adjustments can take place continually as new uses
are found for particular network resources (which could include special-
ized databases or proprietary algorithms as well as the more obvious hard-
ware resources), and do not require all users to agree on, or even know
about, these new uses, thus encouraging an incremental and experimental
approach to resource allocation.

While this example motivates the use of market based resource allocation,
a study of actual implementations is required to see how large the system
must be for its benefits to appear and whether any of the differences be-
tween simple computer programs and human agents pose additional prob-
lems. In particular, a successful use of markets requires a number of changes
to traditional computer systems. First the system must provide an easily
accessible, reliable market so that buyers and sellers can quickly find each
other. Second, individual programs must be price sensitive so they will
respond to changes in relative prices among resources. This implies that
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the programs must, in some sense at least, be able to make choices among
various resources based on how well suited they are for the task at hand.

A number of market-like systems have been implemented over the years [12,
15, 16]. Most instances focus on finding an appropriate machine for run-
ning a single task. While this is important, further flexibility is provided by
systems that use market mechanisms to also manage a collection of parallel
processes contributing to the solution of a single task. In this latter case,
prices give a flexible method for allocating resources among multiple com-
peting heuristics for the same problem based on their perceived progress.
It thus greatly simplifies the development of programs that adjust to un-
predictable changes in resource demand or availability. Thus we have a
second reason to consider markets: not only may they be useful for flexi-
ble allocation of computational resources among competing tasks, but also
the simplicity of the price mechanism could provide help with designing
cooperative parallel programs.

One such system is Spawn [16], in which each task, starting with a certain
amount of money corresponding to its relative priority, bids for the use of
machines on the network. In this way, each task can allocate its budget
toward those resources most important for it. In addition, when prices are
low enough, some tasks can split into several parts which run in parallel,
as shown in Fig. 13.1, thereby adjusting the number of machines devoted
to each task based on the demand from other users. From a user’s point of
view, starting a task with the Spawn system amounts to giving a command
to execute it and the necessary funding for it to buy resources. The Spawn
system manages auctions on each of the participating machines, the use
of resources by each participating task, and provides communication paths
among the spawned processes. It remains for the programmer to determine
the specific algorithms to be used and the meaningful subtasks into which
to partition the problem. That is, the Spawn system provides the price
information and a market, but the individual programs must be written
to make their own price decisions to effectively participate in the market.
To allow existing, non-price sensitive, programs to run within the Spawn
system without modification, we provided a simple default manager that
simply attempted to buy time on a single machine for that task. Users could
then gradually modify this manager for their particular task, if desired, to
spawn subtasks or use market strategies more appropriate for the particular
task.

Studies with this system show that an equilibrium price can be meaning-
fully defined with even a few machines participating. A specific instance is
shown in Fig. 13.2. Despite the continuing fluctuations, this small network
reaches a rough price equilibrium. Moreover, the ratio of prices between
the two machines closely matches their relative speeds, which was the only
important difference between the two types of machine for these tasks. An
additional experiment studied a network with some lengthy, low priority
tasks to which was added a short, high priority task. The new task rapidly
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FIGURE 13.1. Managing parallel execution of subtasks in Spawn. Worker pro-
cesses (W) report progress to their local managers (M) who in turn make re-
ports to the next higher level of management. Upper management combines data
into aggregate reports. Finally, the root manager presents results to the user.
Managers also bid for the use of additional machines and, if successful, spawn
additional subtasks on them.

expands throughout the network by outbidding the existing tasks and driv-
ing the price of CPU time up, as shown in Fig. 13.3. It is therefore able
to briefly utilize a large number of networked machines and illustrates the
inherent flexibility of market based resource allocation. Although the very
small networks used in these experiments could be adequately managed
centrally, these results do show that expected market behavior can emerge
even in small cases.

Computer market systems can be used to experimentally address a num-
ber of additional issues. For instance, understanding what happens when
more sophisticated programs begin to use the network, e.g., processes that
attempt to anticipate future loads so as to maximize their own resource
usage. Such behavior can destabilize the overall system. Another area of
interest is the emergence of diversity or specialization from a group of ini-
tially similar machines. For example, a machine might cache some of the
routines or data commonly used by its processes, giving it a comparative
advantage in bids for similar tasks in the future. Ultimately this could re-
sult in complex organizational structures embedded within a larger market
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framework [13]. Within these groups, some machines could keep track of
the kinds of problems for which others perform best and use this informa-
tion to guide new tasks to appropriate machines. In this way the system
could gradually learn to perform common tasks more effectively.

These experiments also highlighted a number of more immediate practi-
cal issues. In setting up Spawn, it was necessary to find individuals willing
to allow their machines to be part of the market. While it would seem
simple enough to do so, in practice a number of incentives were needed
to overcome the natural reluctance of people to have other tasks running
on their machines. This reluctance is partly based on perceived limitations
on the security of the network and the individual operating systems; for it
was possible that a remote procedure could crash an individual machine or
consume more resources than anticipated. In particular, users with little
need for compute-intensive tasks saw little benefit from participating since
they had no use for the money collected by their machines. This indicates
the need to use real money in such situations so that these users could
use their revenues for their own needs. This in turn, brings the issue of
computer security to the forefront so users will feel confident that no coun-
terfeiting of money takes place and tasks will in fact be limited to only use
resources they have paid for.

Similarly, for those users participating in the system as buyers, they need
to have some idea of what amount of money is appropriate to give a task. In
a fully developed market, there could easily be tools to monitor the results
of various auctions and hence give a current market price for resources.
However, when using a newly created market with only a few users, tools
are not always available to give easy access to prices, and even if they
are, the prices have large fluctuations. Effective use of such a system also
requires users to have some idea of what resources are required for their
programs, or, better yet, to encode that information in the program itself so
it will be able to respond to available resources, e.g., by spawning subtasks,
more rapidly than the users can. Conversely, there must be a mechanism
whereby sellers can make available information about the characteristics of
their resources (e.g., clock speed, available disk space or special hardware).
This can eventually allow for more complex market mechanisms, such as
auctions that attempt to sell simultaneous use of different resources (e.g.,
CPU time and fast memory) or future use of currently unavailable resources
to give tasks a more predictable use of resources. Developing and evaluating
a variety of auction and price mechanisms that are particularly well suited
to these computational tasks is an interesting open problem.

Finally, these experimental systems help clarify the differences between
human and computer markets. For instance, computational processes can
respond to events much more rapidly than people, but are far less sophis-
ticated. Moreover, unlike the situation with people, particular incentive
structures, rationality assumptions, etc. can be explicitly built into compu-
tational processes allowing for the possibility of designing particular market



348 Tad Hogg and Bernardo A. Huberman

mechanisms. This could lead to the ironic situation in which economic the-
ory has greater predictability for the behavior of computational markets
than for that of the larger, and more complex, human economy.

13.3 Chaos in Computational Ecosystems

The Spawn system highlights the need to understand the dynamical be-
haviors of simple agents with fast response times, compared to human in
economic settings, which are complex and slower. To this end we present a
dynamical model of resource contention in the presence of imperfect infor-
mation and delays [9].

In this model, agents independently and asynchronously select among
the available choices based on their perceived payoff. These payoffs are
actual computational measures of performance, such as the time required
to complete a task, accuracy of the solution, amount of memory required,
etc. In general, the payoff G, for using resource r depends on the number
of agents already using it. In a purely competitive environment, the payoff
for using a particular resource tends to decrease as more agents make use
of it. Alternatively, the agents using a resource could assist one another
in their computations, as might be the case if the overall task could be
decomposed into a number of subtasks. If these subtasks communicate
extensively to share partial results, the agents will be better off using the
same computer rather than running more rapidly on separate machines and
then being limited by slow communications. As another example, agents
using a particular database could leave index links that are useful to others.
In such cooperative situations, the payoff of a resource would then increase
as more agents use it, until it became sufficiently crowded.

Imperfect information about the state of the system causes each agent’s
perceived payoff to differ from the actual value, with the difference in-
creasing when there is more uncertainty in the information available to
the agents. This type of uncertainty concisely captures the effect of many
sources of errors such as some program bugs, heuristics incorrectly evalu-
ating choices, errors in communicating the load on various machines and
mistakes in interpreting sensory data. Specifically, the perceived payoffs are
taken to be normally distributed, with standard deviation ¢, around their
correct values. In addition, information delays cause each agent’s knowl-
edge of the state of the system to be somewhat out of date. Although for
simplicity we will consider the case in which all agents have the same effec-
tive delay, uncertainty, and preferences for resource use, we should mention
that the same range of behaviors is also found in more general situations [7].

As a specific illustration of this approach, we consider the case of two
resources so the system can be described by P(n,t), the probability to have
n agents selecting the first resource at time ¢. Its dynamics over a small
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time interval At is governed by [9]

P(n,t+ At) — P(n,t)
At

=Y (W(nln')P(n',t) = W(n'|n)P(n,1))
-

(13.3.1)
where W (n'|n) is the transition probability per unit time that the state
changes from n to n’. To derive an expression for the transition rates,
notice that in the time interval At, the probabilities a given agent using
resource 1 switches to resource 2 and vice versa are given by

P2—=1) = aAtp (13.3.2)
P1—-2) = aAt(l—p)

where « is the rate at which agents reevaluate their resource choice and p
is the probability an agent prefers resource 1 over 2. For a system with net-
work externalities, p depends on the number of agents using each resource.

For very short time intervals, the asynchronous decisions mean one can
assume that only one of the agents reevaluates the option to switch. This
means that W(n|n') = 0 unless n —n' = 0, 1 or —1. Taking these three
cases into account, the transition probabilities become

W(n|n)At = pp—1(n'aAt(l — p(n'))) (13.3.3)
+6n,n’+1((N - nl)aAtp(nl))
+0nn (1 —n'alAt(1 — p(n')) — (N — n')aAtp(n'))

As At — 0, the probability of any changes in the agent choices goes to zero,
making W(n|n)At — 1. In this limit, the right-hand side of the equation
correctly gives 1 for n = n'. Substituting this into Eq. (13.3.1) and letting
At — 0 gives

@%%Q = aP(n,t)[-n(1 - p(n)) — (N —n)p(n)] (13.3.4)
+aP(n+1,8)[(n +1)(1 - p(n +1))]

+aP(n —1,t)[(N —n+1)p(n—1)]

We can now compute the dynamics for the average number of agents by

using the identity
N

d, . X L0Pm,1)

Using Eq. (13.3.1) to evaluate the sum on the right hand side gives the
evolution of the average number of agents as

d{n

B~ (V= mpm) —n( - p))  (1336)

= a(N{p(n)) = (n))
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The first line is simply interpreted as the difference between the number of
agents using resource 2 who switch to resource 1 and those using resource
1 who switch to resource 2. This expression can be further simplified by
invoking the mean field approximation {p(n)) =~ p({n)), and defining the
fraction f =n/N of agents which are using resource 1 at any given time:

df
— =ap— 13.3.7
L =a(p- ) (13.3.7)
With this formulation, it is convenient to treat p as a function of f.
It can be expressed in terms of the payoffs G1,G> associated with each
resource and the uncertainty in the information available to the agents.

Specifically for a normally distributed error around the true value of the

payoff, p becomes
p= % (1 + erf (W)) (13.3.8)

where o quantifies the uncertainty. Notice that this definition captures the
simple requirement that an agent is more likely to prefer a resource when
its payoff is relatively large. Finally, delays in information are modelled by
supposing that the payoffs that enter into p at time ¢ are the values they
had at a delayed time ¢ — 7.

For a typical system of many agents with a mixture of cooperative and
competitive payoffs, the kinds of dynamical behaviors exhibited by the
model are shown in Fig. 13.4. When the delays and uncertainty are fairly
small, the system converges to an equilibrium point close to the optimal
obtainable by an omniscient, central controller. As the information available
to the agents becomes more corrupted, the equilibrium point moves further
from the optimal value. With increasing delays, the equilibrium eventually
becomes unstable, leading to the oscillatory and chaotic behavior shown in
the figure. In these cases, the number of agents using particular resources
continues to vary so that the system spends relatively little time near the
optimal value, with a consequent drop in its overall performance. This can
be due to the fact that chaotic systems are unpredictable, hence making it
difficult for individual agents to automatically select the best resources at
any given time.

13.4 The Uses of Fitness

We will now describe an effective procedure for controlling chaos in dis-
tributed systems [7]. It is based on a mechanism that rewards agents ac-
cording to their actual performance. As we shall see, such an algorithm
leads to the emergence of a diverse community of agents out of an essen-
tially homogenous one. This diversity in turn eliminates chaotic behavior
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FIGURE 13.4. Typical behaviors for the fraction f of agents using resource 1
as a function of time for successively longer delays: a) relaxation toward stable
equilibrium, b) simple persistent oscillations, and c) chaotic oscillations. The
payoffs are G1 = 4+ 7f — 5.333f? for resource 1 and G2 = 4 + 3f for resource 2.
The time scale is in units of the delay time 7, o = 1/4 and the dashed line shows
the optimal allocation for these payoffs.

through a series of dynamical bifurcations which render chaos a transient
phenomenon.

The actual performance of computational processes can be rewarded in
a number of ways. A particularly appealing one is to mimic the mecha-
nism found in biological evolution, where fitness determines the number of
survivors of a given species in a changing environment. This mechanism
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is used in computation under the name of genetic algorithms [5]. Another
example is provided by computational systems modelled on ideal economic
markets [13, 16], which reward good performance in terms of profits. In
this case, agents pay for the use of resources, and they in turn are paid for
completing their tasks. Those making the best choices collect the most cur-
rency and are able to outbid others for the use of resources. Consequently
they come to dominate the system.

While there is a range of possible reward mechanisms, their net effect
is to increase the proportion of agents that are performing successfully,
thereby decreasing the number of those who do not do as well. It is with
this insight in mind that we developed a general theory of effective reward
mechanisms without resorting to the details of their implementations. Since
this change in agent mix will in turn change the choices made by every agent
and their payoffs, those that were initially most successful need not be so
in the future. This leads to an evolving diversity whose eventual stability
is by no means obvious.

Before proceeding with the theory we point out that the resource payoffs
that we will consider are instantaneous ones (i.e., shorter than the delays
in the system), e.g., work actually done by a machine, currency actually
received, etc. Other reward mechanisms, such as those based on averaged
past performance, could lead to very different behavior from the one ex-
hibited in this paper.

In order to investigate the effects of rewarding actual performance we
generalize the previous model of computational ecosystems by allowing
agents to be of different types, a fact which gives them different perfor-
mance characteristics. Recall that the agents need to estimate the current
state of the system based on imperfect and delayed information in order to
make good choices. This can be done in a number of ways, ranging from
extremely simple extrapolations from previous data to complex forecasting
techniques. The different types of agents then correspond to the various
ways in which they can make these extrapolations.

Within this context, a computational ecosystem can be described by
specifying the fraction of agents, f,.s of a given type s using a given resource
r at a particular time. We will also define the total fraction of agents using
a resource of a particular type as

fres = Z frs (13.4.9)

£ =Y s

respectively.

As mentioned previously, the net effect of rewarding performance is to
increase the fraction of highly performing agents. If - is the rate at which
performance is rewarded, then Eq. (13.3.7) is enhanced with an extra term
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which corresponds to this reward mechanism. This gives

dfrs
dt

where the first term is analogous to that of the previous theory, and the
second term incorporates the effect of rewards on the population. In this
equation p,s is the probability that an agent of type s will prefer resource
r when it makes a choice, and 7, is the probability that new agents will be
of type s, which we take to be proportional to the actual payoff associated
with agents of type s. As before, a denotes the rate at which agents make
resource choices and the detailed interpretation of v depends on the par-
ticular reward mechanism involved. For example, if they are replaced on
the basis of their fitness it is the rate at which this happens. In a market
system, on the other hand, v corresponds to the rate at which agents are
paid. Notice that in this case, the fraction of each type is proportional to
the wealth of agents of that type.

Since the total fraction of agents of all types must be one, a simple form
of the normalization condition can be obtained if one considers the relative
payoff, which is given by

= a (f2Pps — frs) +7 (505 — frs) (13.4.10)

— Zr frsGr
ns Zr fT‘resGT

Note that the numerator is the actual payoff received by agents of type s
given their current resource usage and the denominator is the total payoff
for all agents in the system, both normalized to the total number of agents
in the system. This form assumes positive payoffs, e.g., they could be growth
rates. If the payoffs can be negative (e.g., they are currency changes in an
economic system), one can use instead the difference between the actual
payoffs and their minimum value m. Since the 7, must sum to 1, this will

give
Zr frsGr —m

(13.4.11)

= 13.4.12
TS, oG, — Sm (13.412)
which reduces to the previous case when m = 0.
Summing Eq. (13.4.10) over all resources and types gives
d res

e = a (Z FEPprs f:eS> (13.4.13)

df;ype type

dt ’y (nS fS )

which describe the dynamics of overall resource use and the distribution
of agent types, respectively. Note that this implies that those agent types
which receive greater than average payoff (i.e., types for which n; > f¥P¢)
will increase in the system at the expense of the low performing types.
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Note that the actual payoffs can only reward existing types of agents.
Thus in order to introduce new variations into the population an additional
mechanism is needed (e.g., corresponding to mutation in genetic algorithms
or learning).

13.5 Results

In order to illustrate the effectiveness of rewarding actual payoffs in con-
trolling chaos, we examine the dynamics generated by Eq. (13.4.10) for the
case in which agents choose among two resources with cooperative payoffs,
a case which we have shown to generate chaotic behavior in the absence of
rewards [9, 10]. As in the particular example of Fig. 13.4c, we use 7 = 10,
Gy =4+7f1 —5.333f2, G2 = 7—3f>, 0 = 1/4 and an initial condition in
which all agents start by using resource 2.

One kind of diversity among agents is motivated by the simple case in
which the system oscillates with a fixed period. In this case, those agents
that are able to discover the period of the oscillation can then use this
knowledge to reliably estimate the current system state in spite of delays in
information. Notice that this estimate does not necessarily guarantee that
they will keep performing well in the future, for their choice can change
the basic frequency of oscillation of the system.

In what follows, we take the diversity of agent types to correspond to
the different past horizons, or extra delays, that they use to extrapolate to
the current state of the system. These differences in estimation could be
due to having a variety of procedures for analyzing the system’s behavior.
Specifically, we identify different agent types with the different assumed
periods which range over a given interval. Thus, we take agents of type s
to use an effective delay of 7 + s while evaluating their choices.

The resulting behavior is shown in Fig. 13.5 which should be contrasted
with Fig. 13.4c. We used an interval of extra delays ranging from 0 to 40.
As shown, the introduction of actual payoffs induces a chaotic transient
which, after a series of dynamical bifurcations, settles into a fixed point
that signals stable behavior. Furthermore, this fixed point is exactly that
obtained in the case of no delays. That this equilibrium is stable against
perturbations can seen by the fact that if the system were perturbed again
(as shown in Fig. 13.6), it rapidly returns to its previous value. In additional
experiments, with a smaller range of delays, we found that the system
continued to oscillate without achieving the fixed point.

This transient chaos and its eventual stability can be understood from
the distribution of agents with extra delays as a function of time. As can
be seen in Fig. 13.7 actual payoffs lead to a highly heterogeneous system,
characterized by a diverse population of agents of different types. It also
shows that the fraction of agents with certain extra delays increases greatly.
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FIGURE 13.5. Fraction of agents using resource 1 as a function of time with
adjustment based on actual payoff. These parameters correspond to Fig. 13.4c so
without the adjustment the system would remain chaotic.
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FIGURE 13.6. Behavior of the system shown in Fig. 13.5 with a perturbation
introduced at time 1500.

These delays correspond to the major periodicities in the system.

13.6  Stability and Minimal Diversity

As we showed in the previous section, rewarding the performance of large
collections of agents engaging in resource choices leads to a highly diverse
mix of agents that stabilize the system. This suggests that the real cause
of stability in a distributed system is that provided by sufficient diversity,
and that the reward mechanism is an efficient way of automatically finding
a good mix. This raises the interesting question of the minimal amount of
diversity needed in order to have a stable system.

The stability of a system is determined by the behavior of a perturba-
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FIGURE 13.7. Ratio f™P°(t)/f&P¢(0) of the fraction of agents of each type,
normalized to their initial values, as a function of time. Note there are several
peaks, which correspond to agents with extra delays of 12, 26 and 34 time units.
Since 7 = 10, these match periods of length 22, 36 and 44 respectively.

tion around equilibrium, which can be found from the linearized version of
Eq. (13.4.10). In our case, the diversity is related to the range of different
delays that agents can have. For a continuous distribution of extra delays,
the characteristic equation is obtained by assuming a solution of the type
e* in the linearized equation, giving

Ata-— ap'/ds f(s)e= 26+ = (13.6.14)

Stability requires that all the values of A have negative real parts, so
that perturbations will relax back to equilibrium. As an example, suppose
agent types are uniformly distributed in (0,.5). Then f(s) = 1/5, and the
characteristic equation becomes

—-AS

1—
A+ a—ap c

- e M= 13.6.1
5 0 (13.6.15)

Defining a normalized measure of the diversity of the system for this case
by n = S/7, introducing the new variable z = A7(1 + n), and multiplying
Eq. (13.6.15) by 7(1 + n)ze* introduces an extra root at z = 0 and gives

(22 + az)e* —b+be™ =0 (13.6.16)
where
a = ar(l+n)>0 (13.6.17)
L U )
n
ro= —1 ¢ 0,1)

1+
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(a)

FIGURE 13.8. Stability as a function of 8 = ar and n = S/7 for two possible
distributions of agent types: a) f(s) = 1/S in (0,S), and b) f(s) = (1/8)e™*/5.
The system is unstable in the shaded regions and stable to the right and below
the curves.

The stability of the system with uniform distribution of agents with
extra delays thus reduces to finding the condition under which all roots of
Eq. (13.6.16), other than z = 0, have negative real parts. This equation
is a particular instance of an exponential polynomial, whose terms consist
of powers multiplied by exponentials. Unlike regular polynomials, these
objects generally have an infinite number of roots, and are important in the
study of the stability properties of differential-delay equations. Established
methods can then be used to determine when they have roots with positive
real parts. This in turn defines the stability boundary of the equation. The
result for the particular case in which p' = —3.41044, corresponding to the
parameters used in Section 13.5, is shown in the left half of Fig. 13.8.

Similarly, if we choose an exponential distribution of delays, i.e., f(s) =
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(1/S)e—*/3 with positive S, the characteristic equation acquires the form

(2 +pz+qe+r=0 (13.6.18)
where

1
p = ar+ p >0 (13.6.19)
qg = >0

n

!

r = _aTe >0
n

and z = A7. An analysis similar to that for the uniform distribution case
leads to the stability diagram shown in the right hand side of the figure.

Although the actual distributions of agent types can differ from these two
cases, the similarity between the stability diagrams suggests that regardless
of the magnitude of § one can always find an appropriate mix that will make
the system stable. This property follows from the vertical asymptote of the
stability boundary. It also illustrates the need for a minimum diversity in
the system in order to make it stable when the delays aren’t too small.

Having established the right mix that produces stability one may wonder
whether a static assignment of agent types at an initial time would not
constitute a simpler and more direct procedure to stabilize the system
without resorting to a dynamic reward mechanism. While this is indeed
the case in a non-fluctuating environment, such a static mechanism cannot
cope with changes in both the nature of the system (e.g., machines crashing)
and the arrival of new tasks or fluctuating loads. It is precisely to avoid this
vulnerability by keeping the system adaptive that a dynamic procedure is
needed.

Having seen how sufficient diversity stabilizes a distributed system, we
now turn to the mechanisms that can generate such heterogeneity, as well as
the time that it takes for the system to stabilize. In particular, the details
of the reward procedures determine whether the system can even find a
stable mix of agents. In the cases describe above, reward was proportional
to actual performance, as measured by the payoffs associated with the
resources used. One might also wonder whether stability would be achieved
more rapidly by giving greater (than their fair share) increases to the top
performers.

We have examined two such cases: a) rewards proportional to the square
of their actual performance, and b) giving all the rewards to top performers
(e.g., those performing at the 90th percentile or better in the population).
In the former case we observed stability with a shorter transient, whereas in
the latter case the mix of changes continued to change through time, thus
preventing stable behavior. This can be understood in terms of our earlier
observation that whereas a small percentage agents can identify oscillation
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periods and thereby reduce their amplitude, a large number of them can
no longer perform well.

Note that the time to reach equilibrium is determined by two parameters
of the system. The first is the time that it takes to find a stable mix of
agent types, which is governed by 7, and the second the rate at which
perturbations relax, given the stable mix. The latter is determined by the
largest real part of any of the roots, A, of the characteristic equation.

13.7 Discussion

In this paper we have presented a case for treating distributed computation
as an ecosystem, an analogy that turns out to be quite fruitful in the anal-
ysis, design, and control of such systems. In spite of the many differences
between computational processes and organisms, resource contention, com-
plex dynamics and reward mechanisms seem to be ubiquitous in distributed
computation, making it also a tool for the study of natural ecosystems.

Since chaotic behavior seems to be the natural resultant of interacting
processes with imperfect and delayed information, the problem of control-
ling such systems is of paramount importance. We discovered that rewards
based on the actual performance of agents in a distributed computational
system can stabilize an otherwise chaotic or oscillatory system. This leads
in turn to greatly improved system performance.

In all these cases, stability is achieved by making chaos a transient phe-
nomena. In the case of distributed systems, the addition of the reward
mechanism has the effect of dynamically changing the control parameters
of the resource allocation dynamics in such a way that a global fixed point
of the system is achieved. This brings the issue of the length of the chaotic
transient as compared to the time needed for most agents to complete their
tasks. Even when the transients are long, the results of this study show that
the range gradually decreases, thereby improving performance even before
the fixed point is achieved.

A particularly relevant question for distributed systems is the extent
to which these results generalize beyond the mechanism that we studied.
We considered the specific situation of a collection of agents with different
delays in their appraisal of the system evolution. Similar behavior is also
observed if the agents have a bias for a particular resource. It is of interest
to inquire whether using rewards to increase diversity works more generally
than in these cases.

Since we only considered agents choosing between only two resources, it
is important to understand what happens when there are many resources
the agents can choose from. One may argue that since diversity is the key
to stability, a plurality of resources provides enough channels to develop the
necessary heterogeneity, which is what we observed in situations with three
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resources. Another note of caution has to do with the effect of fluctuations
on a finite population of agent types. While we have shown that sufficient
diversity can, on average, stabilize the system, in practice a fluctuation
could wipe out those agent types that would otherwise be successful in
stabilizing the system. Thus, we need either a large number of each kind
of agent or a mechanism, such as mutation, to create new kinds of agents.

Another issue concerns the time scales over which rewards are assigned
to agents. In our treatment, we assumed the rewards were always based
on the performance at the time they were given. Since in many cases this
procedure is delayed, there is the question of the extent to which rewards
based on past performance are also able to stabilize chaotic distributed
systems.

Finally the validity of this approach will have to be determined by ac-
tual implementations and measurements of distributed systems. This will
present some challenges in identifying the relevant variables to be measured
and aggregated to correspond to quantities used in the theory.

The fact that these simple resource allocation mechanisms work and pro-
duce a stable environment provides a basis for developing more complex
software systems that can be used for a wide range of computational prob-
lems.
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